
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B1 Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document # M361-DS-002R0

January 21, 2000
By

Computer Sciences Corporation and PB Farradyne Inc

R1B1 Detailed Design i 02/04/00

Table of Contents
1 Introduction...1-1
1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Acronyms ..1-1

1.5 References ...1-2

1.6 Design Process ..1-2

1.7 Design Tools ..1-3

1.8 Work Products..1-3

2 Software Architecture...2-1
2.1 Service Application Framework ...2-1

2.2 Event Channel Fault Tolerance ..2-2

2.3 Object Publication..2-2

2.4 Database Access..2-3

2.5 Error Processing...2-3

2.6 Service Application Maintenance ...2-4

2.7 Packaging ..2-4

3 Package Designs ..3-1
3.1 DMSService...3-1

3.1.1 DMSServiceClasses (Class Diagram) ..3-1

3.1.2 Sequence Diagrams ..3-4

3.2 DMSControlModule...3-6

3.2.1 DMSControlClassDiagram (Class Diagram) ...3-6

3.2.2 QueueableCommandClassDiagram (Class Diagram)...3-11

3.2.3 Sequence Diagrams ..3-13

3.3 DMSLibraryModule ..3-33

3.3.1 DMSMessageLibraryClasses (Class Diagram) ..3-33

3.3.2 Sequence Diagrams ..3-36

R1B1 Detailed Design ii 02/04/00

3.4 DictionaryModule...3-48

3.4.1 DictionaryModClassDiagram (Class Diagram)..3-48

3.4.2 Sequence Diagrams ..3-51

3.5 PlanService..3-57

3.5.1 PlanServiceClasses (Class Diagram)..3-57

3.5.2 Sequence Diagrams ..3-60

3.6 PlanModule ...3-61

3.6.1 PlanModuleClasses (Class Diagram) ...3-61

3.6.2 Sequence Diagrams ..3-64

3.7 UserManagementService ...3-73

3.7.1 UserManagementServiceClassDiagram (Class Diagram)....................................3-73

3.7.2 Sequence Diagrams ..3-76

3.8 UserManagementModule ..3-78

3.8.1 UserManagementModuleClasses (Class Diagram) ..3-78

3.8.2 Sequence Diagrams ..3-80

3.9 UserManagementResourcesModule ...3-91

3.9.1 UserManagementResourceClasses (Class Diagram)..3-91

3.9.2 Sequence Diagrams ..3-94

3.10 ExtendedEventService ...3-106

3.10.1 ExtendedEventServiceClasses (Class Diagram)...3-106

3.10.2 Sequence Diagrams ..3-108

3.11 System Interfaces..3-110

3.11.1 SystemInterfaces (Class Diagram) ...3-110

3.12 Utility ...3-115

3.12.1 UtilityClasses (Class Diagram)...3-115

3.12.2 Sequence Diagrams ..3-121

3.13 CORBA Utilities ...3-124

3.13.1 CORBAClasses (Class Diagram) ...3-124

3.14 Java Classes ..3-126

3.14.1 JavaClasses (Class Diagram)..3-126

Appendix A - Glossary...3-128

R1B1 Detailed Design 1-1 02/04/00

1 Introduction

1.1 Purpose
This document describes the detailed design of the Chart II system software for Release 1, Build
1. This design is driven by the Release 1, Build 1 requirements as stated in document M361-RS-
001-00, “CHART II System Requirements Specification For Release 1 Build 1 “ and further
refines the high level design presented in document M361-DS-001, “R1B1 High Level Design”.

1.2 Objectives
The main objective of this design is to provide software developers with details regarding the
implementation of the service applications used to satisfy the requirements of Release 1, Build 1
of the Chart II system.

This design also serves to provide documentation to those outside of the software development
community to show how the requirements are being accounted for in the software design.

1.3 Scope
This design is limited to Release 1, Build 1 of the Chart II system and the requirements as stated
in the aforementioned requirements document. Additionally, this design document includes only
the design of CHART II services and does not include the design of the Graphical User Interface.

1.4 Acronyms

The following acronyms appear throughout this document:

BOA Basic Object Adapter

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DMS Dynamic Message Sign

FMS Field Management Station

GUI Graphical User Interface

IDL Interface Definition Language

OMG Object Management Group

R1B1 Detailed Design 1-2 02/04/00

ORB Object Request Broker

R1B1 Release 1, Build 1 of the CHART II System

UML Unified Modeling Language

1.5 References

CHART II System Requirements Specification For Release 1 Build 1, document number M361-
RS-001-00, Computer Sciences Corporation and PB Farradyne, Inc.

R1B1 High Level Design, document number M361-DS-001-00, Computer Sciences Corporation
and PB Farradyne, Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.2, OMG
Document 98-02-33

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

1.6 Design Process
As in the high level design, object oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), a de facto standard for diagramming object oriented
designs.

In the high level design, system interfaces were identified and specified. These interfaces were
partitioned into logical groupings of packages. This design serves to fill in the details necessary
to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its
own class diagram and sequence diagrams for major operations included in the package’s
interfaces. Additionally, packages needed for implementation but not present in the high level
design are included in this design, with each of these also having its own class diagram and
sequence diagrams. Packages are also included for third party software that is needed by the
CHART II software, such as the ORB and Java classes. Only classes and methods shown on the
sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward
implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

R1B1 Detailed Design 1-3 02/04/00

1.7 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the Chart II project, Release 1 configuration, System
Design phase. A system version is included for each software package.

1.8 Work Products
This design contains the following work products:

• A UML Class diagram for each package showing the low level software objects which will
allow the system to implement the interfaces identified in the high level design.

• UML Sequence diagrams for non-trivial operations of each interface identified in the high
level design. Additionally, sequence diagrams are included for non-trivial methods in classes
created to implement the interfaces. Operations that are considered trivial are operations that
do nothing more than return a value or a list of values and where interaction between several
classes is not involved.

R1B1 Detailed Design 2-1 02/04/00

2 Software Architecture
This section discusses various elements of the design that warrant more discussion than the UML
diagrams afford. The High Level Design Document referenced above provides background
information on CORBA and R1B1 Packaging and Deployment that may be necessary to fully
benefit from the discussions below.

2.1 Service Application Framework
In a CORBA based system, service applications are used to serve CORBA objects through the
ORB, making them available for use by other applications through a network. Once an object
has been created and connected to the ORB, the object can act as an independent piece of
software, given access to some basic services. The service applications that are built to serve
CORBA objects usually share the same basic structure and functionality. The design team took
advantage of this fact to provide a reusable framework for service applications.

The design of the application framework for CHART II CORBA Services is based upon two
interfaces, the ServiceApplication and the ServiceApplicationModule. A class that implements
the ServiceApplication interface is able to provide the basic services needed by CHART II
CORBA objects. A ServiceApplicationModule is responsible for the initialization and shutdown
of specific CORBA objects, using the services provided by the ServiceApplication.

A default implementation of the ServiceApplication interface is provided by the
DefaultServiceApplication class. The DefaultServiceApplication is designed to meet the needs
of all R1B1 service applications. Classes exist for each service application in the R1B1 CHART
II system to provide a main entry point for the service application. As evidenced in the design,
these service application classes do little more than construct a DefaultServiceApplication object
and tell it to start, however their existence provides a place for service specific code should it be
needed.

Several classes that implement the ServiceApplicationModule are included in this design, with
each module responsible for serving one or more specific CHART II CORBA classes. Each of
these modules has its own initialization and shutdown method tailored to the needs of the objects
which it serves. Typical module initialization involves object creation from a state persisted in
the database, connecting objects to the ORB, creation of an event channel, and publication of
objects in the Trading Service. Typical module shutdown involves revoking offers from the
Trading Service, destroying any previously created event channels, disconnecting objects from
the ORB, and destroying the objects.

The DefaultServiceApplication is capable of hosting one or more ServiceApplicationModules.
The modules served by a specific instance of the DefaultServiceApplication are specified by a
configuration file used by the DefaultServiceApplication. This design allows for flexibility in
the partitioning of objects among software processes. Modules can be brought together into a
single process to achieve performance gains or moved to separate processes to provide greater
fault isolation.

The design of the Service Application Framework is evidenced throughout this design. Packages
exist for each module as well as the distinct service applications that will act as hosts for one or

R1B1 Detailed Design 2-2 02/04/00

more modules. Each service application package design includes a description of the modules
that it will serve, and each module package design includes details on the CHART II CORBA
objects which it will serve.

2.2 Event Channel Fault Tolerance
The standard CORBA event service contains a single event channel which is accessed through
transient objects served by the event service called consumers and suppliers. Since the objects
are transient, if the event service should crash, applications using the event service need to
reinitialize their connection to the event service once it becomes available. The CHART II R1B1
design contains utility classes which allow applications to be tolerant of restarts of the event
service. The PushEventSupplier, PushEventConsumer, and EventConsumerGroup classes, and
the EventConsumer interface provide functionality for maintaining the connection to an event
channel. The PushEventSupplier works as a wrapper to a CORBA PushSupplier which detects
when an attempt to push fails and automatically attempts to reconnect on subsequent pushes.

The EventConsumer and EventConsumerGroup work together to allow multiple associations of
event channels and consumers to be maintained, with a polling thread that periodically checks
the connection of the consumer to the event channel and performs an automatic reconnect if
necessary. The PushEventConsumer is an implementation of the EventConsumer that uses the
push event model.

In addition to the need to provide fault tolerance for the CORBA Event Service, the event
service’s limitation to a single event channel causes events of all types to be passed on the same
event channel. While this provides no hardship to suppliers of events, it requires consumers to
filter the events to determine if they need to take action on an event or throw it away. This leads
to inefficiency in both the processing required to filter the events as well as the network
bandwidth used to pass unwanted events to consumers. This also makes it harder to provide a
modular GUI design which allows seamless addition of new functionality.

To make up for this shortcoming, this design includes a package named the
ExtendedEventService. This package specifies IDL for an EventChannelFactory interface that
provides the capability for creating multiple event channels within a single EventService. The
CHART II R1B1 design utilizes this added functionality to allow each module to be responsible
for creating an event channel in their local event service and publishing the event channel object
in the trader. This allows event channels throughout the system to be collected to provide a “big
picture” of the real time status of the system and also provides fault isolation if an event service
should fail.

2.3 Object Publication
As discussed in the High Level Design, the CORBA Trading Service is used by CHART II to
allow CORBA objects to be discovered and used by other applications, including the CHART II
GUI. All objects published in the Trading Service from CHART II applications are published
with a service type equal to the interface name which the object implements. Full interface name
hierarchies are used through the use of the supertypes registration feature (such as
SharedResource / DMS) to allow generic as well as specific queries. All CHART II objects
published in the trader have a standard mandatory property named “ID” of type octet sequence.

R1B1 Detailed Design 2-3 02/04/00

This ID is a globally unique identifier that remains with the object for the life of the object, even
through multiple restarts of the service serving the object. Use of this ID allows objects to be
located regardless of where they are being served in the system.

The following CHART II R1B1 objects are published in the Trading Service:

• Dictionary

• DMS

• DMSFactory

• DMSLibraryFactory

• DMSMessageLibrary

• DMSStoredMessage

• DMSStoredMsgItem

• Organization

• Plan

• PlanFactory

• UserManager

2.4 Database Access
A relational database is used to store system configuration data, persist object states (to allow
restarts to assume their previous state), and to log user operations in the operations log. Java
Database Connectivity (JDBC) is used within the application software to access the database.
Access to the database is managed by the CHART II Database class. This class manages
connections to the database. Each software package that requires access to the database includes
a class that contains methods for all database accesses needed by the package. These classes are
named with the package name and a suffix of DB. These database classes all use the Database
object to obtain a connection to the database each time a series of queries or statements are to be
executed. By managing a pool of actual database connections, the Database class makes sure
that only one thread at a time has access to a given database connection, thus allowing
transactional processing to be done safely.

2.5 Error Processing
Since CHART II is a distributed object system, it is expected that any call to a remote object
could cause a CORBA exception to be thrown. All software calls to remote objects handle
CORBA exceptions and the processing is not shown on sequence diagrams within this design
except where it serves to illustrate a design point.

Furthermore, as with any system, most method calls, system calls, etc. can fail unexpectedly. All
such errors are handled by the software and are not shown explicitly in the package design
portion of this document. The default action when such an error is encountered is to reach a
consistent state within the object where the error occurred and then to throw a

R1B1 Detailed Design 2-4 02/04/00

CHART2Exception (even for non-CORBA calls). The CHART2Exception contains debugging
information as well as text suitable for display to a user or administrator. These exceptions are
shown on sequence diagrams to call out error conditions that are not obvious.

Error conditions that involve throwing a specific exception as specified in the IDL are shown on
sequence diagrams within this design.

2.6 Service Application Maintenance
Although not a requirement of R1B1, all service applications implement the IDL Service
interface to allow for clean service shutdown. In addition to allowing shutdown, the Service
interface includes features that will be useful for a future system monitor process. These features
include the ability for a service to tell its name when asked, tell the network connection site
where it is running, and respond to a ping operation. Since the Service is a CORBA object
attached to an ORB, these operations on a service can be accessed from anywhere on the
CHART II network.

2.7 Packaging
This software design is broken into many packages of related classes. The table below shows
each of the packages along with a description of each.

CORBAUtilities This package contains classes included in the third party
ORB product used for implementation. Only classes that are
directly referenced from diagrams for CHART II software
are included in this package’s diagrams.

JavaClasses This package contains classes included in the Java
programming language. Only classes that are directly
referenced from diagrams for CHART II software are
included in this package’s diagrams.

DictionaryModule This package contains classes needed to implement the
Dictionary interface as specified in the high level design.

DMSControlModule This package contains classes necessary for implementing
the DMSFactory, DMS, and DMSStoredMsgItem interfaces
as specified in the high level design.

DMSLibraryModule This package contains classes necessary for implementing
the DMSLibraryFactory, DMSMessageLibrary, and
StoredDMSMessage interfaces specified in the high level

R1B1 Detailed Design 2-5 02/04/00

design.

DMSService This package contains classes needed to provide an
executable host to the R1B1DMSControlModule,
R1B1DMSLibraryModule, and R1B1DictionaryModule.

ExtendedEventService This package contains classes used to extend the event
service provided by the ORB vendor to allow multiple event
channels to be created. This is done through the definition
and implementation of the EventChannelFactory interface.

PlanModule This package contains classes needed to implement the
PlanFactory, Plan, and Plan Item interfaces specified in the
high level design.

PlanService This package contains classes necessary to provide an
executable host to the R1B1PlanModule.

SystemInterfaces This package contains the interfaces specified in the high
level design. Each class in this package is also specified in
IDL and can be accessed in the system using CORBA.

UserManagementModule This package contains classes necessary to implement the
UserManager interface specified in the high level design.

UserManagement
ResourcesModule

This package contains classes necessary to implement the
OperationsCenter and Organization interfaces specified in
the high level design.

UserManagementService This package contains classes necessary to provide an
executable host to the R1B1UserManagementModule and the
R1B1UserManagementResourcesModule.

Utility This package contains utility classes shared by other
packages, including classes used to access the database and
the OperationsLog class.

R1B1 Detailed Design 2-6 02/04/00

The remainder of this document contains detailed designs of each of the above packages.

R1B1 Detailed Design 3-1 02/04/00

3 Package Designs
The following sections provide detailed designs of each of the software packages included in
CHART II R1B1. Each section contains a class diagram and sequence diagrams for non-trivial
operations identified in the High Level Design IDL.

3.1 DMSService

3.1.1 DMSServiceClasses (Class Diagram)

The DMSService is an application that publishes objects relating to Dynamic Message Signs
(DMS). The service itself contains minimal functionality and serves as a host to modules that it
installs based on properties it reads at runtime. It is these modules that actually serve and publish
the objects that provide the functionality of the DMS Service Application.

R1B1 Detailed Design 3-2 02/04/00

ServiceApplicationModule

1

1

DictionaryModuleDMSLibraryModule

DefaultServiceApplication

ServiceApplication

DMSService

DMSControlModule

1

*

Service

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

m_dictionaryImplList
m_evtChannelNameList

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

main(String[] args):void

int m_factoryOfferID;
DMSFactoryImpl m_factory;
Collection m_dmsStoredMsgItemList;

ping
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

Figure 3-1. DMSServiceClasses (Class Diagram)

R1B1 Detailed Design 3-3 02/04/00

3.1.1.1 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed
a properties file during construction. This properties file contains configuration data used by this
class to set the ORB concurrency model, determine which ORB services need to available,
provide database connectivity, etc. The properties file also contains the class names of service
modules that should be served by the service application. During startup, the
DefaultServiceApplication instantiates the service application module classes listed in the
properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading
Service. Each module must provide an implementation of the getOfferIDs method and be able to
return the offer ids for each object they have exported to the trader during their initialization.
The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is
expected to remove its offers from the trader during a shutdown. If the
DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old
offers prior to initializing modules during its next start. This keeps multiple offers for the same
object from being placed in the trader.

3.1.1.2 DMSControlModule (Class)

This class implements the ServiceApplicationModule interface. It creates and serves a single
DMSFactoryImpl object, which in turn serves zero or more DMSImpl objects. This module also
serves DMSStoredMsgItemImpl objects that were created for DMSImpls being served from this
module.

3.1.1.3 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary
implementation.

3.1.1.4 DMSLibraryModule (Class)

This module manages the Message Libraries and Stored Messages for the DMS service. It
provides the functionality to add, delete and modify the libraries and messages stored in them.

3.1.1.5 DMSService (Class)

This class provides the main method for the DMS Service Application. It acts as the host for the
DMS Control, DMS Library, and Dictionary server modules. It makes use of the
DefaultServiceApplication to provide access to standard objects to the server modules.

3.1.1.6 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

interface

R1B1 Detailed Design 3-4 02/04/00

3.1.1.7 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown
externally. All implementing classes provide a means to be cleanly shutdown and can be pinged
to detect if they are alive.

interface

3.1.1.8 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.1.2 Sequence Diagrams

3.1.2.1 DMSService:Shutdown (Sequence Diagram)

This sequence diagram shows the shutdown of the DMS Service module. It disconnects itself
from the ORB, then calls the DefaultServiceApplication object to shutdown. Refer to the Utility
package's DefaultServiceApplication:Shutdown sequence diagram for details on the shutdown of
the DefaultServiceApplication.

DMSService DefaultServiceApplication

shutdown

Administrator

ORB

disconnect(this)

getORB

delete

checkAccess
[no access]

AccessDenied

BOA

getBOA

deactivate_impl

shutdown

TokenManipulator

Figure 3-2. DMSService:Shutdown (Sequence Diagram)

R1B1 Detailed Design 3-5 02/04/00

3.1.2.2 DMSService:Startup (Sequence Diagram)

This sequence shows the startup of the DMS Service. This service acts as the host for the DMS
Control Module, the DMS Library Module, and the Dictionary module for R1B1, however the
modules served is configurable by an initialization file. During startup, this service simply
creates a DefaultServiceApplication object passing it the name of the properties file for the
service. The DMSService then starts the DefaultServiceApplication, which initializes common
services, such as the database, ORB and CORBA services. The DefaultServiceApplication also
creates and initializes each of the modules configured in the properties file. After the
DefaultServiceApplication has started, the DMSService connects itself to the ORB, since it
implements the Service interface, and then notifies the BOA to start accepting CORBA requests.

Refer to the Utility package's DefaultServiceApplication:Start sequence diagram for details on
the startup of the DefaultServiceApplication. Refer to the DMSControlModule,
DMSLibraryModule, and DictionaryModule detailed designs for information on initialization of
these modules.

This call blocks
until the ORB is
shutdown.

Refer to the DefaultServiceApplication:Start
sequence diagram. The DefaultServiceApplication
will install and initialize the DictionaryModule,
the DMSServiceModule, and the DMSLibraryModule
for R1B1.

Administrator

DMSService

DefaultServiceApplication

main

create

start

getBOA

impl_is_ready

getORB

ORB

DMSService
implements the
Service IDL
interface, and
thus connects
itself to the
ORB.

Get IOR for service
and print to file so
IOR can be used by
future system monitor
to access the Service
interface.

connect (this)

object_to_string(this)

BOA

[start failed]
exit

Figure 3-3. DMSService:Startup (Sequence Diagram)

R1B1 Detailed Design 3-6 02/04/00

3.2 DMSControlModule

3.2.1 DMSControlClassDiagram (Class Diagram)

The DMSControlModule is an installable module that serves the DMSFactory, DMS, and
DMSStoredMsgItem objects to the rest of the Chart2 system. This diagram shows how the
implementation of these CORBA interfaces rely on other supporting classes to perform
their functions.

*

1

DMSStoredMsgItemFactory

DMSControlDB

1

*

11

*

PushEventSupplier

CosTrading.Register

1

1

1 1

DMSStoredMessage

1 *

ServiceApplication11

1

1

1

1

publishes
DMSs
using

CosTrading.Lookup

1*

1

*

1

*

1

1

Publishes

Publishes

Publishes

creates
plan items

using

is removed from
system using

publishes
factory and
stored msg
items using

1

1

1

1

1

Finds
Dictionary
Using

11

DMSControl.Configuration

DMSStoredMsgItemImpl

CommandQueue

*

MULTIStringDefaults

java.util.Properties

Finds
Stored Msg
Using

1

*

1

PlanItem

CommEnabled

ServiceApplicationModule

DMS

DMSFactoryImpl

DMSFactory

SharedResourceManager

SharedResource

1

1

QueueableCommand

DMSControlModule

DMSMessage

DMSFont

1

1

1

DMSControlModuleProperties

1

1

1

DMSStoredMsgItem

1

*1

0..1

1

1

DMSImpl

createDMSStoredMsgItem
removeDMSStoredMsgItem

addCommand(QueueableCommand cmd)
shutdown()
-getNextCommand():QueueableCommand

m_commands
m_shutdown

getProperty()
setProperty()

getID
getMessageDescription
setMessageDescription
getMessageContent
setMessageContent
getMinCharacters
remove

DMSControlDatabase(DBConnectionManager db);
DMSData[] getDMSList()
insertDMS(DMSData data);
deleteDMS(byte[] id);
setDMSMessage
setDMSControllingOpCenter;
setDMSErrorStatus
setDMSCommLossTimeout;
setDMSPollingInterval;
getDMSStoredMsgItemList
insertDMSStoredMsgItem
deleteDMSStoredMsgItem

DBConnectionManager m_db;

getDMS
getMessage
setDMS
setMessage

DMSStoredMsgItemImpl(DMS dms,
byte[] storedMsgID,
ObjectRemovalListener listener);

DMS m_dms;
byte[] m_messageID;
DMSStoredMsgItemFactory m_factory;;

DMSControlModuleProperties(Properties props, Properties defaults)
getDefaultPollInterval():int
getDefaultMaxPollInterval():int
getDefaultCommLossTimeoutl():int
getSharedResourceMonitoringInterval():int

execute()
interrupted()

setMultiString
getMultiMessage
getPlainTextMessage
getMessageLength
formatMessage

m_multiString

createPixelMap

m_fontHeight
m_characterWidth

setDefLineJustification
getDefLineJustification
setDefPageOnTime
getDefPageOnTime
setDefPageOffTime
getDefPageOffTime

m_defaultJustificationLine
m_defaultPageOnTime
m_defaultPageOffTime

DMSImpl(Configuration, DMSFactory,
 PushEventSupplier, Dictionary,
 ServiceApplication, DMSControlDB)
setMessageImpl
blankSignImpl
resetControllerImpl
setPollIntervalImpl
takeOfflineImpl
putOnlineImpl
pollNowImpl
setCommLossTimeoutImpl
shutdown():boolean
equals(Object obj):boolean
setAsyncPollingResults()
-checkResourceConflict

byte[] m_id;
Configuration m_config;
String m_netConnectionSite;
boolean m_offLine;
String m_controllingOpCtrName;
byte[] m_controllingOpCtrID;
String m_message;
long m_statusChangeTime;
byte m_dmsMessageBeacon;
String m_dmsMessageMultiString;
int m_shortErrorStatus;
CosTrading.Register m_tradingRegister;
DMSStoredMsgItemFactory m_itemFactory;

int m_factoryOfferID;
DMSFactoryImpl m_factory;
Collection m_dmsStoredMsgItemList;

getResources
getControlledResources(OpCenterID)
hasControlledResources(OpCenterID)

getID
setControllingOpCenter
getControllingOpCenter
getControllingOpCenterName
clearControllingOpCenter
getOwnerOrg

getID
setName
getName
activate
remove
isUsingObject

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

setName
getName
setMessage
getMessage
blankSign
isBlank
setPollInterval
getPollInterval
getMaxPollInterval
getStatusChangeTime
getStatus
resetController
pollNow
getSignMetrics
getFontMetrics
getMaxPages
setCommLossTimeout
getCommLossTimeout
getOperationalStatus
getNetConnectionSite
createPlanItem
remove
getSignType

DMSFactoryImpl(ServiceApplication,
DMSControlDB,PushEventSupplier,
SharedResourceMonitoringInterval)
getDMSOfferIDs():int[]
shutdown():boolean
removeDMS(DMSImpl dms);

Thread m_asyncFMSStatusThread;
Collection m_dmsList;

createDMS
getDMSList

takeOffline
putOnline
isOffline

Figure 3-4. DMSControlClassDiagram (Class Diagram)

R1B1 Detailed Design 3-7 02/04/00

3.2.1.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications
turned on or off. This typically only applies to field devices.

1

interface

3.2.1.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Register is the interface to the trading
service that server applications use to publish objects in order to make them available for client
applications to discover.

1

interface

3.2.1.3 DMS (Class)

This class represents a Dynamic Message Sign (DMS). It has attributes and methods for
controlling and maintaining the status of the DMS within the system.

interface

3.2.1.4 DMSFactoryImpl (Class)

The DMSFactoryImpl class provides an implementation of the DMSFactory interface as
specified in the IDL. The DMSFactory maintains a list of DMSImpl objects and is responsible
for publishing DMS objects in the Trader. It maintains a mapping of offer ids received from the
trader for each DMS object published so that it may withdraw the offers during shutdown or
when a DMS is removed from the system.

3.2.1.5 DMSControl.Configuration (Class)

This typedef defines data that is used to identify the configuration of a DMS in the system.

1

typedef

3.2.1.6 DMSControlModule (Class)

This class implements the ServiceApplicationModule interface. It creates and serves a single
DMSFactoryImpl object, which in turn serves zero or more DMSImpl objects. This module also
serves DMSStoredMsgItemImpl objects that were created for DMSImpls being served from this
module.

R1B1 Detailed Design 3-8 02/04/00

3.2.1.7 DMSControlModuleProperties (Class)

This class is used to provide access to properties used by the DMS Control Module. This class
wraps properties that are passed to it upon construction. It adds its own defaults and provides
methods to extract properties specific to the DMS Control Module.

3.2.1.8 DMSControlDB (Class)

The DMSControlDB class is a collection of methods that perform database operations on tables
pertinent to DMS Control. The class is constructed with a Database object, which manages
database connections. Every operation in this class obtains a connection to the database from the
Database object prior to performing the DB operation which is requested.

3.2.1.9 DMSFactory (Class)

The DMSFactory provides a means to create new DMS objects to be added to the system.

1

interface

3.2.1.10 DMSFont (Class)

This class contains the functionality for translating text messages into pixels for display on a
DMS.

utility

3.2.1.11 DMSImpl (Class)

The DMSImpl class implements the DMS, SharedResource, and CommEnabled interfaces
specified by IDL. The DMSImpl contains a command queue that is used to execute long running
operations in a thread separate from the CORBA request threads, thus allowing quick initial
responses. The DMSImpl contains *Impl methods that map to each method specified in the IDL
that requires command queuing. The queueable command objects simply call the appropriate
DMSImpl method as the command is executed by the command queue in the queue's thread of
execution.

3.2.1.12 DMSMessage (Class)

This utility class represents a text message which is capable of being stored on a DMS. It
contains methods for input and output of the message in different formats.

utility

3.2.1.13 QueueableCommand (Class)

A QueuableCommand is an abstract class used to represent a command that can be placed on a
queue for asynchronous execution. Derived classes implement the execute method to specify the
actions taken by the command when it is executed.

1

R1B1 Detailed Design 3-9 02/04/00

3.2.1.14 DMSStoredMessage (Class)

This class represents a stored DMS message which is created by the DMS Message Editor and
stored in the database. It can be displayed on multiple DMS models and contains an attribute
stating the minimum width of a sign that can display the message in its entirety.

interface

3.2.1.15 MULTIStringDefaults (Class)

This class contains the model-specific default values for creating MULTI strings for a DMS.
MULTI is a standard mark-up language specified by NTCIP for specifying how a text message is
to be displayed by a DMS.

3.2.1.16 DMSStoredMsgItem (Class)

This class represents a plan item that is used to associate a stored DMS message with a specific
DMS. When the item is activated, it sets the message of the DMS to the stored message to
which it is linked.

interface

3.2.1.17 DMSStoredMsgItemImpl (Class)

This class implements the DMSStoredMsgItem interface as defined in IDL. It acts as an
association between a DMS and a StoredDMSMessage.

3.2.1.18 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract
class is subclassed for specific actions that can be planned in the system.

interface

3.2.1.19 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations
center responsible for the disposition of the resource while the resource is in use.

1

interface

3.2.1.20 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.
Implementing classes must be able to provide a list of all shared resources under their
management. Implementing classes must also be able to tell others if there are any resources
under its management that are controlled by a given operations center.

1

interface

R1B1 Detailed Design 3-10 02/04/00

3.2.1.21 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The
user of this class can pass a reference to the event channel factory to this object. The constructor
will create a channel in the factory. The push method is used to push data on the event channel.
The push method is able to detect if the event channel or its associated objects have crashed.
When this occurs, a flag is set, causing the push method to attempt to reconnect the next time
push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to
occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest
reconnect interval that can be used. The push method uses this interval and the current time to
determine if a reconnect should be attempted, thus reconnects can be throttled indepently of a
supplier's push rate.

1

3.2.1.22 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out
order. As each command object is pulled off the queue by the CommandQueue's thread, the
command object's execute method is called, at which time the command performs its intended
task.

3.2.1.23 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects which have previously been published.

1

interface

3.2.1.24 DMSStoredMsgItemFactory (Class)

This interface is implemented by objects that can act as a factory for DMSStoredMsgItem
objects. Implementing classes must know how to create a DMSStoredMsgItem and add it to the
system and how to remove a DMSStoredMsgItem from the system.

interface

3.2.1.25 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.2.1.26 java.util.Properties (Class)

R1B1 Detailed Design 3-11 02/04/00

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its "defaults"; this second property list
is searched if the property key is not found in the original property list.

3.2.1.27 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

1

interface

3.2.2 QueueableCommandClassDiagram (Class Diagram)
This class diagram shows the classes that are derived from QueueableCommand. A class exists
for each type of command that can be executed asynchronously on a DMS object.

QueueableCommand

BlankDMSCommand

TakeDMSOfflineCommand PutDMSOnlineCommand

SetPollIntervalCommand

SetCommLossTimeoutCommand PollDMSNowCommand ResetDMSCommand

SetDMSMessageCommand

execute()
interrupted()

execute()
interrupted()

CommandStatus m_status
DMS m_dms
byte[] m_opCenterID

execute()
interrupted()

CommandStatus m_status
DMS m_dms
byte[] m_opCenterID

execute()
interrupted()

CommandStatus m_status
DMS m_dms

execute()
interrupted()

CommandStatus m_status
DMS m_dms

execute()
interrupted()

CommandStatus status
DMS m_dms
byte[] m_opCenterID

execute()
interrupted()

CommandStatus m_status
DMS m_dms
String m_multi
boolean m_beacon
byte[] m_opCenterID
String m_opCenterName

execute()
interrupted()

CommandStatus status
DMS m_dms
long m_pollInterval

execute()
interrupted()

CommandStatus status
DMS m_dms
long m_commLossTimeout

Figure 3-5. QueueableCommandClassDiagram (Class Diagram)

3.2.2.1 PollDMSNowCommand (Class)

This class is used as a holder for command data needed to execute the pollNow method of the
DMSImpl. This object is placed on a queue and executed in a separate thread of execution.
When executed, it calls the appropriate method on the DMSImpl object that it has stored.

3.2.2.2 PutDMSOnlineCommand (Class)

R1B1 Detailed Design 3-12 02/04/00

This class is used as a holder for command data needed to execute the putDMSOnline method of
the DMSImpl. This object is placed on a queue and executed in a separate thread of execution.
When executed, it calls the appropriate method on the DMSImpl object that it has stored.

3.2.2.3 BlankDMSCommand (Class)

This class is used as a holder for command data needed to execute the blankSign method of the
DMSImpl. This object is placed on a queue and executed in a separate thread of execution.
When executed, it calls the appropriate method on the DMSImpl object that it has stored.

3.2.2.4 QueueableCommand (Class)

A QueuableCommand is an abstract class used to represent a command that can be placed on a
queue for asynchronous execution. Derived classes implement the execute method to specify the
actions taken by the command when it is executed.

1

3.2.2.5 SetCommLossTimeoutCommand (Class)

This class is used as a holder for command data needed to execute the setCommLossTimeout
method of the DMSImpl. This object is placed on a queue and executed in a separate thread of
execution. When executed, it calls the appropriate method on the DMSImpl object using the
parameters that it has stored.

3.2.2.6 SetDMSMessageCommand (Class)

This class is used as a holder for command data needed to execute the setMessage method of the
DMSImpl. This object is placed on a queue and executed in a separate thread of execution.
When executed, it calls the appropriate method on the DMSImpl object passing the parameters
that it has stored.

3.2.2.7 SetPollIntervalCommand (Class)

This class is used as a holder for command data needed to execute the setPollInterval method of
the DMSImpl. This object is placed on a queue and executed in a separate thread of execution.
When executed, it calls the appropriate method on the DMSImpl object using the parameters that
it has stored.

3.2.2.8 ResetDMSCommand (Class)

This class is used as a holder for command data needed to execute the resetController method of
the DMSImpl. This object is placed on a queue and executed in a separate thread of execution.
When executed, it calls the appropriate method on the DMSImpl object that it has stored.

3.2.2.9 TakeDMSOfflineCommand (Class)

R1B1 Detailed Design 3-13 02/04/00

This class is used as a holder for command data needed to execute the takeDMSOffline method
of the DMSImpl. This object is placed on a queue and executed in a separate thread of
execution. When executed, it calls the appropriate method on the DMSImpl object that it has
stored.

3.2.3 Sequence Diagrams

3.2.3.1 DMSControlModule:ActivateDMSStoredMsgItem (Sequence Diagram)

A DMSStoredMsgItem is served from within the DMS Control Module, however it is referenced
as part of a Plan under the guise of a generic plan item. When a DMSStoredMsgItem's activate
method is called, the item gets the contents of its stored message and uses the contents to set the
message on its associated DMS. Since the DMSStoredMsgItem stores references to CORBA
objects, there is the possibility that either the StoredDMSMessage or DMS are not available
(they may exist on different servers etc.) When this occurs, the DMSStoredMessage Item cannot
activate and updates the command status to indicate its failed completion status.

Plan that requested
the activate will monitor
the command status at
this point.

[Comm Failure accessing DMS]
complete (invalid DMS in plan item)

checkAccess (SetDMSMessage)

[no access]
add (SetDMSMessage)

Format text into MULTI

[stored message not found]
complete (stored message not found)

[error accessing DMS]
CHART2Exception

Per requirements, even a user
that cannot set messages on
individual DMSs can execute
a plan that contains the DMS,
given the right to use plans.
We therefore temporarily grant
the right to set a DMS message in
our private TokenManipulator
for this one operation.

[stored message
not found]

CHART2Exception

[no access]
AccessDenied

checkAccess (UsePlans)

[no access]
complete(access denied)

CosTrading.Lookup

query (DMSStoredMessage where id == m_storedMsgID)

getFontMetrics

TokenManipulator

ORB

DMSStoredMsgItemImpl

getSignMetrics CommandStatus
object is passed on
to the DMS.

StoredDMSMessage
objects may have been deleted
without deleting associated
plan items.

Refer to DMSControlModule:SetMessage
for details on DMS processing of setMessage
operation.

DMS CommandStatus

[CORBA error]
CHART2Exception

DMSStoredMessage

activate

getMessageContent

setMessage

[Comm Failure accessing Stored Message]
complete (invalid stored message)

Figure 3-6. DMSControlModule:ActivateDMSStoredMsgItem (Sequence Diagram)

R1B1 Detailed Design 3-14 02/04/00

3.2.3.2 DMSControlModule:BlankSign (Sequence Diagram)

This sequence diagram shows the required operations to blank a DMS. Since field
communications are involved, the actual blanking of the DMS is performed in a separate thread
using a command queue. Prior to queing the command, preliminary checks are done to ensure
the request can be completed given operational rules. A Command Status object is used by the
caller to track the progress of the asynchronous command. Events are pushed on an event
channel after the sign is blanked and when the controlling operations center has been cleared.

blankSignImpl

[success]
seDMSMessage

DMSControlDB

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

FMS PushEventSupplierOperationsLog

ORB

DMSImpl TokenManipulator CommandStatus

BlankDMSCommand

[success]
log

addCommand

[resource conflict]
completed

delete

[success]
setDMSControllingOpCenter

CORBA return

CommandQueue

[no access]
log

[offline]
completed

checkResourceConflict

execute

blankSign

checkAccess

[DMS is offline]
Chart2Exception(offline)

[no access]
AccessDenied

[DMS is offline]
completed

[no access]
completed

create

[resource conflict]
completed

blankSign

[success]
push (DMSBlanked)

[success]
clearControllingOpCenter

[success]
push (ControllingOpCenterChanged)

completed

checkResourceConflict

[resource conflict]
ResourceControlConflict

Figure 3-7. DMSControlModule:BlankSign (Sequence Diagram)

R1B1 Detailed Design 3-15 02/04/00

3.2.3.3 DMSControlModule:CheckResourceConflict (Sequence Diagram)

This sequence diagram shows how a DMS determines if a user from a given operations center
should be allowed to perform an operation that will cause the controlling operations center for
the DMS to be set. This is used by all operations that affect the display of the sign.

getOpCenterID
[token op center ID ==
controlling op center id]

no conflict

[no controlling op center]
no conflict

getControllingOpCenter

checkResourceConflict

[no override access]
conflict

[has override access]
no conflict

DMSImpl

TokenManipulatorDMSImpl

checkAccess

Figure 3-8. DMSControlModule:CheckResourceConflict (Sequence Diagram)

3.2.3.4 DMSControlModule:DMSControlModuleCreatePlanItem (Sequence Diagram)

R1B1 Detailed Design 3-16 02/04/00

The DMSControlModule class implements the DMSStoredMsgItemFactory interface and as
such is responsible for creating DMSStoredMsgItem objects when requested. This class is
responsible for creating the DMSStoredMsgItemImpl object and connecting it to the ORB to
make it available through CORBA. The object's data is persisted to the database and the object
is published in the Trading Service. The publication in the trader allows the plan which contains
the plan item to locate the object no matter where the object is being served.

(Since a DMSStoredMsgItem is specific to DMS control, the DMSControlModule serves
DMSStoredMsgItem objects. Likewise, plans are served from the PlanModule, thus the Plan
object that contains the DMSStoredMsgItem is served from a different service application. The
Plan can find the object references for its items in the trader so that it can activate the plan
items.)

CosTrading.Register

Method
Caller

DMSControlModule

DMSStoredMsgItemImpl

createDMSStoredMsgItem

create

insertDMSStoredMsgItem

connect (DMSStoredMsgItemImpl)

export (DMSStoredMsgItemImpl)

DMSStoredMsgItem

ORB

Add To List

DMSControlDB

Figure 3-9. DMSControlModule:DMSControlModuleCreatePlanItem (Sequence Diagram)

3.2.3.5 DMSControlModule:DMSControlModuleRemovePlanItem (Sequence Diagram)

The DMSControlModule class implements the DMSStoredMsgItemFactory interface and as
such is responsible for deleting DMSStoredMsgItem objects from the system when requested.
The offer of the DMSStoredMsgItem is withdrawn from the trader, the DMSStoredMsgItem data
is removed from the database, and the object is disconnected from the ORB.

R1B1 Detailed Design 3-17 02/04/00

deleteDMSStoredMsgItem

Remove from List

Method
Caller

DMSControlModule DMSStoredMsgItemImpl ORB CosTrading.Register

removeDMSStoredMsgItem

withdraw (DMStoredMsgItemImpl)

disconnect (DMSStoredMsgItemImpl)

DMSControlDB

Figure 3-10. DMSControlModule:DMSControlModuleRemovePlanItem (Sequence
Diagram)

3.2.3.6 DMSControlModule:GetControlledResources (Sequence Diagram)

This sequence diagram shows how a DMS Factory reports the resources it contains that are
under the control of a specific operations center. The factory simply asks each DMS object for
its controlling operations center and adds the DMS to a list if the operations center matches the
operations center in question. The list of DMSs under the control of the given operations center
is then returned.

R1B1 Detailed Design 3-18 02/04/00

Method
Caller

DMSFactoryImpl DMSImpl

getControlledResources
(op ctr)

[* for each DMSImpl]
getControllingOpCenter

[controlling op ctr ==
op ctr]

(add to list)

controlled resources

Figure 3-11. DMSControlModule:GetControlledResources (Sequence Diagram)

3.2.3.7 DMSControlModule:HasControlledResources (Sequence Diagram)

This sequence shows how a DMS Factory reports whether or not any of the DMSs in the factory
are currently being controlled by a given operations center. The method returns only true or
false, so as soon as one DMS under the control of the operations center is found the method can
return true without looking further.

ORB

DMSFactoryImpl DMSImpl

hasControlledResources
(op ctr)

[* for each DMS]
getControllingOpCenter

[1 or more controlling op ctr == op ctr]
true

false

Figure 3-12. DMSControlModule:HasControlledResources (Sequence Diagram)

R1B1 Detailed Design 3-19 02/04/00

3.2.3.8 DMSControlModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the DMS Control Module. This module is created
by a service that will host this module's objects. A ServiceApplication is passed to this module's
initialize method and provides access to basic objects needed by this module. This module
creates a DMS Factory which in turn creates DMS objects. In addition, the module creates and
serves objects for any plan items that were previously created for each DMS. The DMSFactory
and DMS objects are published via the CORBA Trading service to make them available for
general status updates and candidates for control (given the proper access rights).

create

export (DMSStoredMsgItem)

Store Offer ID in List

create

DMSImpl

ServiceApplication

DMSControlModule

initialize

ServiceApplication

getDBConnectionManager

DMSControlDB

[*for each stored message item]
connect (DMSStoredMsgItem)

getOperationsLog

DMSControlModuleProperties

getDefaultProperties

getProperties

create

CosTrading.Register

getTradingRegister

export (DMS)

export(DMSFactory)

getDMSStoredMsgItemList

DMSFactoryImplcreate

getDMSList

[*for each DMS]
create

ORB

getTradingLookup

query (where type == Dictionary)

create

CosTrading.Lookup

export(EventChannel)

getEventChannelFactory

Store Offer ID

DMSStoredMsgItemImpl
[*for each stored message item]

create

CommandQueue

connect (DMSFactory)

connect (DMS)

PushEventSupplier

Figure 3-13. DMSControlModule:Initialize (Sequence Diagram)

R1B1 Detailed Design 3-20 02/04/00

3.2.3.9 DMSControlModule:MonitorControlledResources (Sequence Diagram)

This sequence diagram shows how the DMSFactory monitors its controlled resources to detect
when a DMS is left displaying a message with no one logged into the operations center that has
control of the DMS. During the creation of the DMSFactoryImpl, a thread is created that is used
to periodically get a summarized list of all operations centers that are controlling one or more
DMS's contained in the factory. Each operations center is then checked to make sure there are 1
or more users logged in. When the condition exists where the operations center does not have at
least one user logged in but is in control of 1 or more DMSs, an alarm is raised through the event
channel.

CosTrading.Lookup

[1 or more unique op centers controlling resources]
query(op center where ID = op center IDs)

create

This functionality
is to be executed
periodically in a loop
for as long as the
thread is running. [* for each op center]

getNumLoggedInUsers

setDaemon(true)

[* for each op ctr]
[num logged in users==0]

push (UnhandledControlledResourcesEvent)

OperationsLog

[* for each op ctr]
[num logged in users==0]

log

DMSControlModule

DMSFactoryImpl

java.lang.Thread

DMSImpl

create

start

[* for each DMS]
getControllingOpCenter

OperationsCenter PushEventSupplier

Figure 3-14. DMSControlModule:MonitorControlledResources (Sequence Diagram)

3.2.3.10 DMSControlModule:ProcessFMSPollingResults (Sequence Diagram)

The FMS Subsystem polls each DMS in the system and supplies discrepancies or problems
found during the polling through a blocking call. For this reason, the DMSFactoryImpl contains
a thread that is used to execute this blocking call. When the blocking call returns, the
DMSFactoryImpl dispatches the changed status or error condition to the proper DMSImpl object
so that it may update its internal state and push an event through the event service.

R1B1 Detailed Design 3-21 02/04/00

setAsyncPollingResults

Set Persisted State

push (CurrentDMSStatus)

DMSFactoryImpl

java.lang.Thread

FMS DMSImpl CosEventAdmin.EventChannel

This call blocks until
a status change has
been detected by the
FMS subsystem.

The sequence
below is repeated
ad infinitum in the
factory's thread.

start

run

getAsyncPollingResults

create

Find DMSImpl in DMS List

Figure 3-15. DMSControlModule:ProcessFMSPollingResults (Sequence Diagram)

3.2.3.11 DMSControlModule:RemoveDMS (Sequence Diagram)

This sequence diagram shows the processing done by the DMSFactoryImpl when its
objectRemoved method is called. This metod is defined in the ObjectRemoval interface and is
called by a DMSImpl when it is removed from the system, giving the DMSFactoryImpl a chance
to clean up any references it may have to the DMSImpl. The Factory must remove the reference
to the DMSImpl from its internal list of DMSs, remove the DMSImpl from the database and the
FMS subsystem, and withdraw the DMS's offer from the trading service.

R1B1 Detailed Design 3-22 02/04/00

checkAccess

[no access]
log

[no access]
AccessDenied

shutdown

delete

[object not found]
return

log (DMS Removed)

push (DMSDeleted)

TokenManipulator CommandQueue

ORB

DMSFactoryImpl

Remove Object from Offer List

disconnect (DMSImpl)

remove (FMS Device ID)

CosTrading.Register ORB FMS PushEventSupplier OperationsLogDMSControlDB

remove

Find Object in Offer List

[object not found]
return

withdraw

deleteDMS (DMS ID)

DMSImpl

removeDMS

Figure 3-16. DMSControlModule:RemoveDMS (Sequence Diagram)

3.2.3.12 DMSControlModule:RemoveDMSStoredMsgItem (Sequence Diagram)

When a DMSStoredMsgItem is removed from the system, the DMSStoredMsgItem delegates the
call to a DMSStoredMsgItemFactory that was passed to the DMSStoredMsgItem during
construction. The factory takes care of cleaning up trader offers, database records, etc. Refer to
the DMSControlRemovePlanItem sequence diagram for details.

R1B1 Detailed Design 3-23 02/04/00

ORB

DMSStoredMessageItem DMSStoredMsgItemFactory

removeDMSStoredMsgItem

remove

[no access]
AccessDenied

TokenManipulator

checkAccess

Figure 3-17. DMSControlModule:RemoveDMSStoredMsgItem (Sequence Diagram)

3.2.3.13 DMSControlModule:CreateDMS (Sequence Diagram)

When a DMS is added to the DMS factory, the default values are read from the
DMSControlModuleProperties and the DMS data is added to the database. A DMSImpl object
and its corresponding command queue is created and the object is connected to the ORB. The
DMSAdded event is then pushed into the event channel. Access is denied if the caller does not
possess requisite privilege(s).

R1B1 Detailed Design 3-24 02/04/00

export (DMSImpl)

getDefaultCommLossTimeout

push(DMSAdded)

[success]
log

[access denied]
log

DMSControlDB

addDMS

DMS

ORB

DMSImpl

TokenManipulatorDMSFactoryImpl CosTrading.Register PushEventSupplier

createDMS

create

DMSControlModuleProperties

CommandQueue

FMS

getDefaultMaxPollInterval

[db error]
Chart2Exception

create

OperationsLog

checkAccess

insertDMS

[no access]
Access Denied

ORB

connect (DMSImpl)

getDefaultPollInterval

Figure 3-18. DMSControlModule:CreateDMS (Sequence Diagram)

3.2.3.14 DMSControlModule:CreatePlanItem (Sequence Diagram)

The DMS Module serves all DMSStoredMsgItem objects. These objects associate a stored DMS
message with a DMS. When a DMS is asked to create a plan item, it passes the call onto a
DMSStoredMsgItem factory which it was passed during construction. The DMS object serves
only as a convenient creation point for DMS related plan items. It is actually the implementer of
the DMSStoredMsgItemFactory interface that manages the collection of DMSStoredMsgItem
objects. Refer to the DMSControlCreatePlanItem sequence diagram for details.

R1B1 Detailed Design 3-25 02/04/00

DMSStoredMsgItemFactory

DMSStoredMsgItem

createDMSStoreMsgItem

DMSStoredMsgItem

ORB

DMSImpl

createPlanItem

Figure 3-19. DMSControlModule:CreatePlanItem (Sequence Diagram)

3.2.3.15 DMSControlModule:SetMessage (Sequence Diagram)

This sequence diagram shows the required operations to allow a message to be set on a DMS.
Since field communications are involved, the actual setting of the message is performed
asynchronously via a command queue. Prior to queing the command, preliminary checks are
done to ensure the request can be completed given operational rules. A Command Status object
is used by the caller to track the progress of the asynchronous command. Events are pushed on
an event channel after the message is changed and when the controlling operations center has
been changed.

R1B1 Detailed Design 3-26 02/04/00

DMSControlDB

[success]
setDMSControllingOpCenter

[success]
setDMSMessage

setMessageImpl

OperationsLog

[no access]
log

ORB

CommandQueue

SetDMSMessageCommand

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

[success]
log

checkResourceConflict

[resource conflict]
ResourceControlConflict

checkForBannedWords

[resource conflict]
completed

[has banned words]
log

[has banned words]
completed[has banned words or

beacons on and no msg text]
DisapprovedMesssageContent

CORBA return

DMSImpl

setMessage

DictionaryTokenManipulator

checkAccess

[DMS is offline]
Chart2Exception(offline)

[no access]
AccessDenied

create

[success]
setControllingOpCenter

[success]
push (ControllingOpCtrChanged)

completed

addCommand

[DMS is offline]
completed

execute

FMS

[offline]
completed

checkResourceConflict

[resource conflict]
completed

setMessage

PushEventSupplier

[success]
push (DMSMessageChanged)

delete

CommandStatus

[no access]
completed

Figure 3-20. DMSControlModule:SetMessage (Sequence Diagram)

3.2.3.16 DMSControlModule:PollDMS (Sequence Diagram)

A user with the proper functional rights can poll a DMS for its current status outside of the
normal polling cycle. Since this will require field communications which may be time
consuming, the command is executed asynchronously by the DMS and a command status object
is used to keep the caller apprised of the execution status. An event is pushed via the CORBA
Event Service to notify the caller and others of the new DMS status following the poll attempt.

R1B1 Detailed Design 3-27 02/04/00

pollNow

completed

checkAccess

[DMS is offline]
Chart2Exception(offline)

[no access]
AccessDenied

[DMS is offline]
completed

[no access]
completed

create

pollNowImpl

FMS PushEventSupplierOperationsLogCommandStatus

PollDMSNowCommand

CommandQueue

addCommand

execute

[success]
log

[no access]
log

[offline]
completed

forcedPoll

[success]
push (CurrentDMSStatus)

CORBA return

delete

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

ORB

DMSImpl TokenManipulator

Figure 3-21. DMSControlModule:PollDMS (Sequence Diagram)

3.2.3.17 DMSControlModule:ResetController (Sequence Diagram)

A user with the proper functional rights can reset a DMS controller. Since this will require field
communications which may be time consuming, the command is executed asynchronously by
the DMS and a command status object is used to keep the caller apprised of the execution status.
The DMS is blanked prior to the reset command being issued to ensure that the DMS will be
reset to a known state. An event is pushed via the CORBA Event Service to notify the caller and
others that the sign was blanked. Since resetting a DMS relinquishes control of the DMS,
resource conflict must be checked to make sure the DMS is not in use by different operations
center than the one requesting the reset.

R1B1 Detailed Design 3-28 02/04/00

resetControllerImpl

[no access]
completed

create

resetController

delete

[success]
log

ORB
DMSImpl TokenManipulator DMSControlDB

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

checkAccess

[DMS is offline]
Chart2Exception(offline)

[no access]
AccessDenied

[DMS is offline]
completed

FMS PushEventSupplierOperationsLogCommandStatus

ResetDMSCommand

CommandQueue

addCommand

execute

[success]
setDMSMessage

[no access]
log

[offline]
completed

checkResourceConflict

[resource conflict]
completed

blankSign

[success]
push (DMSBlanked)

[success]
clearControllingOpCenter

[success]
push (ControllingOpCtrChanged)

completed

checkResourceConflict

[resource conflict]
ResourceControlConflict

[resource conflict]
completed

CORBA return

resetController

Figure 3-22. DMSControlModule:ResetController (Sequence Diagram)

3.2.3.18 DMSControlModule:SetCommLossTimeout (Sequence Diagram)

When the commLossTimeout parameter for a DMS is to be set, a
SetCommLossTimeoutCommand object is created and added to the command queue. The caller
who is setting the commLossTimeout is informed about the command being queued and is
required to determine the status of the set operation from the CommandStatus object. When the
command added to the CommandQueue gets its turn to execute, it calls back into the DMSImpl,
which sends the request to the FMS and updates the database. After execution the
setCommLossTimeoutCommand object is deleted.

R1B1 Detailed Design 3-29 02/04/00

checkAccess

[no access]
Access Denied

[no access]
log]

DMSControlDBTokenManipulator

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

[success]
log

delete

[fms comm error]
completed

ORB

DMSImpl

setCommLossTimeout

setCommLossTimeout

create

CommandQueue

[no access]
completed

completed

setDMSCommLossTimeout

FMS OperationsLogCommandStatus

Make sure comm loss timeout > poll interval

[comm loss timeout too small]]
completed

[comm loss timout too small]
CHART2Exception

CommandQueued

SetCommLossTimeoutCommand

setCommLossTimeoutImpl

[comm loss time not settable]
UnsupportedOperation

[comm loss time not settable]
completed

addCommand

execute

Figure 3-23. DMSControlModule:SetCommLossTimeout (Sequence Diagram)

3.2.3.19 DMSControlModule:SetDMSOffline (Sequence Diagram)

A user with the proper functional rights can set a DMS offline if the DMS is blank or failed.
Taking a DMS offline involves FMS communications and may take an extended amount of time.
For this reason, the operation is executed asynchronously and a command status object is used to
keep the caller informed of the execution status. An attempt is made to blank the DMS before
taking it offline. Taking the DMS offline has the effect of stopping automatic polling and
disallows any further operations other than to put the DMS online. Shared resource management
rules apply to this operation. If the DMS is under the control of an operations center, only a user
from that operations center or a user with override functional rights may take the DMS offline.
Taking the DMS offline clears the controlling operations center.

R1B1 Detailed Design 3-30 02/04/00

DMSControlDB

[success]
setDMSMessage

setDMSControllingOpCenter

log

takeOfflineImpl

[success]
m_offLine = true

create

[DMS is not blank or failed]
completed

[DMS is not blank or failed]
Chart2Exception(invalid state)

[success]
push (ControllingOpCtrChanged)

completed

checkResourceConflict

[resource conflict]
ResourceControlConflict

[offline]
completed

checkResourceConflict

[resource conflict]
completed

[not blank]
blankSign

[success]
push (DMSBlanked)

[success]
clearControllingOpCenter

CommandQueue

addCommand

execute

[no access]
log

[no access]
completed

DMSImpl TokenManipulator
FMS PushEventSupplierOperationsLog

CommandStatus

delete

[not blank or failed]
completed

stopPolling

[success]
push (DMSOffline)

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

ORB

[resource conflict]
completed

CORBA return

takeOffline

checkAccess

[DMS is offline]
Chart2Exception(offline)

[no access]
AccessDenied

[DMS is offline]
completed

TakeDMSOfflineCommand

Figure 3-24. DMSControlModule:SetDMSOffline (Sequence Diagram)

R1B1 Detailed Design 3-31 02/04/00

3.2.3.20 DMSControlModule:SetDMSOnline (Sequence Diagram)

A user with the proper functional rights may put a DMS online. Putting the DMS online
involves FMS communications and is therefore done asynchronously. A command status object
is used by the caller to monitor the status of the operation. Before a DMS is brought online, it is
blanked to insure its status is consistent with the status known by the system. Automatic polling
of the DMS is started within the FMS subsystem.

blankSign

[blankSign success]
push (DMSBlanked)

completed

CORBA return

putOnline

checkAccess

[DMS is online]
Chart2Exception(online)

[no access]
AccessDenied

[DMS is online]
completed

[no access]
completed

create

startPolling

[success]
push (DMSOnline)

[success]
m_offLine = false

CommandStatus

PutDMSOnlineCommand

CommandQueue
ORB

DMSImpl TokenManipulator
FMS

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

OperationsLog

addCommand

execute

[no access]
log

[online]
completed

DMSControlDB

putOnlineImpl

[blankSign success]
setDMSMessage

[blankSign success]
clearControllingOpCenter

[blankSign success]
push (ControllingOpCtrChanged)

[blankSign success]
setDMSControllingOpCenter

delete

PushEventSupplier

Figure 3-25. DMSControlModule:SetDMSOnline (Sequence Diagram)

R1B1 Detailed Design 3-32 02/04/00

3.2.3.21 DMSControlModule:SetPollInterval (Sequence Diagram)

When the pollInterval parameter for a DMS is set, a SetPollIntervalCommand object is created
and added to the command queue. The caller who is setting the pollInterval is informed about the
command being queued and is required to determine the status of the set operation from the
CommandStatus object. When the command added to the CommandQueue gets its turn to
execute, the poll interval request is sent to the FMS and the database is updated. After execution
the SetPollIntervalCommand object is deleted.

addCommand

[poll interval too big]
completed

Make Sure Poll Interval < Comm Timeout

[poll interval too big]
CHART2Exception SetPollIntervalCommand

setPollInterval

checkAccess

[no access]
completed

create

execute

setPollInterval

[success]
log

delete

[no access]
Access Denied

CommandQueued

completed

[success]
setDMSPollingInterval

[no access]
log]

ORB

DMSImpl TokenManipulator FMS

setPollIntervalImpl

OperationsLogCommandStatus

Commands are
executed
asynchronously
in the command
queue's thread of
execution.

CommandQueue DMSControlDB

Figure 3-26. DMSControlModule:SetPollInterval (Sequence Diagram)

R1B1 Detailed Design 3-33 02/04/00

3.2.3.22 DMSControlModule:Shutdown (Sequence Diagram)

The DMSControlModule is shutdown by its host application. When told to shutdown, the
DMSControlModule disconnects the DMSFactory from the ORB, withdraws its offer from the
trader, and shuts down the object. When the DMSFactory is shut down, it withdraws the offers
of each DMS and disconnects each DMS from the ORB. The DMS Control module also
disconnects any DMSStoredMsgItem objects that it is serving.

[* for each DMSImpl]
withdraw

delete

DMSFactoryImpl

[* for each DMSStoredMsgItem impl]
disconnect

DMSImpl

shutdown

disconnect (DMSFactory)

shutdown

[* for each DMSImpl]
disconnect

ServiceApplication

DMSControlModule

Shutdown Shared
Resource Monitor

Thread

delete

withdraw (DMSFactory)

[* for each DMSStoredMsgItemImpl]
delete

[* for each DMSStoredMsgItemImpl}
withdraw

DMSStoredMsgItemImplORB CosTrading.Register

Figure 3-27. DMSControlModule:Shutdown (Sequence Diagram)

3.3 DMSLibraryModule

3.3.1 DMSMessageLibraryClasses (Class Diagram)
The DMSLibraryModule is a Service Application module that serves the DMSLibraryFactory,
DMSMessageLibrary and StoredDMSMessage objects to the rest of the Chart2 system.

R1B1 Detailed Design 3-34 02/04/00

1

1 1

*

1
1

1

1

1

1
1
1

CosTrading.LookupCosTrading.Register

Database

PushEventSupplier

DMSStoredMessage

DMSStoredMessageImpl

DMSMessageLibrary

DMSMessageLibraryImpl

ServiceApplicationModule

11

*

1
DMSLibraryModule

*

*

1

1

*

DMSLibraryFactory

DMSLibraryFactoryImpl

1

*

DMSLibraryDB

1

*

1

*
1

createLibrary
getLibraryList

DMSLibraryFactoryImpl(CosTrading.Register, CosTrading.Lookup,
 PushEventSupplier, DMSLibraryDB)
getDMSMessageLibraryOfferIDs()
removeLibrary(Object)
shutdown

m_libraryCollection
m_OfferIDs

getLibraryList
insertMessageLibrary
insertStoredMessage
deleteMessageLibrary
deleteStoredMessage
setStoredMessageContent
setStoredMessageDescription
getStoredMessageList
setMessageLibraryName

DMSStoredMessageImpl(DMSLibraryDB, PushEventSupplier)

m_id
m_messageDescription
m_messageText
m_isMessageTextMulti
m_category
m_beaconsOn
m_lastModifiedBy

getID
setName
getName
addMessage
removeMessage
getStoredMessages
getPlansUsingLibrary
getPlansUsingMessage
remove

DMSMessageLibraryImpl(CosTrading.Register, CosTrading.Lookup,
 PushEventSupplier, DMSLibraryDB,
 DMSLibraryFactoryImpl, Dictionary)
getDMSStoredMessageOfferIDs()
shutdown

m_id
m_name
m_createdBy
m_OfferIDs

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

getID
getMessageDescription
setMessageDescription
getMessageContent
setMessageContent
getMinCharacters
remove

Figure 3-28. DMSMessageLibraryClasses (Class Diagram)

3.3.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

1

interface

3.3.1.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Register is the interface to the trading
service that server applications use to publish objects in order to make them available for client
applications to discover.

1

interface

R1B1 Detailed Design 3-35 02/04/00

3.3.1.3 Database (Class)

1

3.3.1.4 DMSLibraryDB (Class)

This class contains the methods that perform database operations for the DMS Library module.
It is constructed with a Database object that provides the connections to the database server. All
the methods in this class get a unused connection from the database before performing any
operation on the database. The connection is released at completion of the operation.

3.3.1.5 DMSLibraryFactory (Class)

This class is used to create new DMS libraries and maintain them in a collection.

interface

3.3.1.6 DMSLibraryFactoryImpl (Class)

This class implements the DMSLibraryFactory interface as specified in the IDL from the High
Level Design and is used to create new DMS message libraries and manage them in a collection

3.3.1.7 DMSMessageLibrary (Class)

This class represents a logical collection of stored DMS messages that are stored in the database.

interface

3.3.1.8 DMSMessageLibraryImpl (Class)

This class implements the DMSMessageLibrary interface as specified in the IDL from the High
Level Design. It represents a logical collection of DMS messages which are stored in the
database.

3.3.1.9 DMSStoredMessage (Class)

This class represents a stored DMS message which is created by the DMS Message Editor and
stored in the database. It can be displayed on multiple DMS models and contains an attribute
stating the minimum width of a sign that can display the message in its entirety.
interface

3.3.1.10 DMSStoredMessageImpl (Class)

This class implements the DMSStoredMessage interface as specified in the IDL from the High
Level Design. It represents a DMS stored message which is created by the DMS Message Editor
and stored in the database. It can be displayed on multiple DMS models and contains an
attribute stating the minimum width of a sign that can display the message in its entirety.

R1B1 Detailed Design 3-36 02/04/00

3.3.1.11 DMSLibraryModule (Class)

This module manages the Message Libraries and Stored Messages for the DMS service. It
provides the functionality to add, delete and modify the libraries and messages stored in them.

3.3.1.12 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The
user of this class can pass a reference to the event channel factory to this object. The constructor
will create a channel in the factory. The push method is used to push data on the event channel.
The push method is able to detect if the event channel or its associated objects have crashed.
When this occurs, a flag is set, causing the push method to attempt to reconnect the next time
push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to
occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest
reconnect interval that can be used. The push method uses this interval and the current time to
determine if a reconnect should be attempted, thus reconnects can be throttled indepently of a
supplier's push rate.

1

3.3.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.3.2 Sequence Diagrams

3.3.2.1 DMSLibraryModule:CreateDMSMessageLibrary (Sequence Diagram)

This sequence diagram shows how a user possessing the proper functional rights can add a DMS
Message Library to the system. An AccessDenied exception is returned if the user does not have
the functional right to add a library to the system. Otherwise, the library object is created and
published via the CORBA Trading Register. An event is pushed via the CORBA Event Service
to notify interested parties of the new library. The library is added to the database. The user
action is logged to the operations log.

R1B1 Detailed Design 3-37 02/04/00

Store Offer ID

ORB

connect(DMSMessageLibraryImpl)

CosTrading:Register PushEventSupplier

ORB

DMSLibraryFactoryImpl

DMSMessageLibraryImpl

push(DMSLibraryAdded)

createLibrary

insertMessageLibrary

export(DMSMessageLibraryImpl)

create

DMSLibraryDB

[Duplicate Library]
CHART2Exception

[no rights]
AccessDenied

TokenManipulator OperationsLog

[AccessDenied]
log(AccessDenied)

log(DMSLibraryAdded)

DMSMessageLibrary

checkAccess

Figure 3-29. DMSLibraryModule:CreateDMSMessageLibrary (Sequence Diagram)

3.3.2.2 DMSLibraryModule:CreateDMSStoredMessage (Sequence Diagram)

This sequence diagram shows how a user with the proper functional rights can create a new
DMS message to be stored for later use. An AccessDenied exception is returned if a user
without proper functional rights tries to add a message to a library. The contents of the message
are checked against a dictionary prior to storing. The dictionary is obtained by querying the
trader. If approved, the message is stored in the database, an object is created, connected to the
ORB, published in the trader and its existence is pushed to interested parties via the CORBA
Event Service. Note that even though a dictionary check is done at the time of storage, the
dictionary is always checked on the server side prior to allowing a message to be set on a DMS.
The user action is logged to the operations log.

R1B1 Detailed Design 3-38 02/04/00

Disapproved
MessageContent

CHART2Exception
(database error)

CHART2Exception
(dictionary not found)

insertStoredMessage

export(DMSStoredMessageImpl)

[no right]
AccessDenied

checkForBannedWords

create

Store Offer ID

OperationsLog

[AccessDenied]
log(AccessDenied)

log(DMSStoredMessageAdded)

PushEventSupplierDictionary

DMSStoredMessageImpl

DMSMessageLibraryImpl

ORB

StoredDMSMessage

push(DMSStoredMessageAdded)

DMSLibraryDB

validateBeaconState

CHART2Exception
(invalid beacon state)

TokenManipulator

checkAccess

addMessage

connect(DMSStoredMessageImpl)

CosTrading.RegisterORB

Beacons can only be
turned on if message
text is not blank.

Figure 3-30. DMSLibraryModule:CreateDMSStoredMessage (Sequence Diagram)

3.3.2.3 DMSLibraryModule:GetPlansUsingLibrary (Sequence Diagram)

This sequence diagram shows how a user can get a list of plans that are using the stored DMS
messages of a particular DMS message library.

R1B1 Detailed Design 3-39 02/04/00

PlanList

See getPlansUsingMessage
sequence diagram for details

[* for each DMSStoredMessage]
getPlansUsingMessage

ORB

DMSMessageLibraryImpl

getPlansUsingLibrary

DMSMessageLibraryImpl
collects all the plans returned by
getPlansUsingMessages
 and returns it to the caller.

Figure 3-31. DMSLibraryModule:GetPlansUsingLibrary (Sequence Diagram)

3.3.2.4 DMSLibraryModule:GetPlansUsingMessage (Sequence Diagram)

This sequence diagram shows how a user can get a list of plans that are using a particular stored
DMS message.

R1B1 Detailed Design 3-40 02/04/00

Caller

DMSMessageLibraryImpl CosTrading.Lookup PlanFactory

Object identifier of the message
is passed to the PlanFactory
for checking if the PlanItems in
each of the Plans in the Factory
are using it.

getPlansUsingMessage

query
Plan List

Plan List

[* for each PlanFactory]
getPlansUsingObject

Plan List

Figure 3-32. DMSLibraryModule:GetPlansUsingMessage (Sequence Diagram)

3.3.2.5 DMSLibraryModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the DMS Library Module. This module will be
created by a ServiceApplication, which provides the access to the basic services needed by this
module such as ORB, Trader and Database. This module creates the DMS Library specific
database object. It also creates a DMS Library Factory and DMS Message Library objects
contained in the Library Factory. The DMSLibraryFactory and DMSMessageLibrary objects are
connected to the ORB and published in the CORBA Trading service to make them available to
other processes. The Offer IDs of the objects that were published in the trader are stored in a file
so that they may be wihdrawn at shutdown. This module creates an event supplier channel for
pushing events to other processes and publishes it in the trader.

R1B1 Detailed Design 3-41 02/04/00

create

[* for each DMSStoredMessageImpl]
export

ORB

[* for each stored message]
connect

[* for each DMSMessageLibraryImpl]
connect

success

export(DMSLibraryFactoryImpl)

getTradingLookup

[* for each stored message]
create

[* for each DMSMessageLibraryImpl]
export

create

export(PushEventSupplier)

Store Offer IDs

Stire Offer ID

CosTrading:Register

PushEventSupplier

ServiceApplication

DMSMessageLibraryImpl

DMSLibraryFactoryImpl

DMSStoredMessageImpl

DMSLibraryModule

getOperationsLog

Store Offer IDs

getDefaultProperties

getProperties

connect(DMSLibraryFactoryImpl)

initialize

getDBConnectionManager

getLibraryList

getTradingRegister

getEventChannelfactory

create

[* for each library]
create

getStoredDMSMessageList

CosTrading.Lookup

query(type == Dictionary)

Application Service

DMSLibraryDB

Figure 3-33. DMSLibraryModule:Initialize (Sequence Diagram)

3.3.2.6 DMSLibraryModule:ModifyDMSStoredMessage (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can modify a stored
message in a library. An AccessDenied exception is returned if the user does not have the
functional right to modify the message. Otherwise, the message passed is checked against the
dictionary for banned words and a disapproved message content exception is returned if the
message contains banned words. The beacon state is checked to make sure that the beacons are
not set for a blank message. An event is pushed via the CORBA Event Service to notify others
of the change to the stored message's contents. The user action are logged to the operation log

R1B1 Detailed Design 3-42 02/04/00

checkAccess

[AccessDenied]
log(AccessDenied)

[Dictionary error]
CHART2Exception

Dictionary PushEventSupplier

ORB
DMSStoredMessageImpl

Beacons can only be
turned on if message
text is not blank.

Banned Word List

TokenManipulator DMSLibraryDB

setStoredMessageContent
[database error]

CHART2Exception

push(DMSStoredMessageChanged)

[no right]
AccessDenied

DMSStoredMessageList

OperationsLog

log(DMSStoredMessageChanged)

getStoredMessages

DMSMessageLibraryImpl

[error]
CHART2Exception

setMessageContent

checkForBannedWords

[banned words]
DisapprovedMessageContent

validateBeaconState

[invalid beacon state]
CHART2Exception

Figure 3-34. DMSLibraryModule:ModifyDMSStoredMessage (Sequence Diagram)

3.3.2.7 DMSLibraryModule:RemoveDMSMessageLibrary (Sequence Diagram)

This sequence diagram shows how a user with the proper functional rights can remove a DMS
Message Library from the system. This will include the removal of all stored messages
contained within the library. Since stored messages may be used in Plans that contain
DMSStoredMessageItems, a check is made for any plans that may contain the stored messages
being deleted and the user is warned. If the user acknowledges the deletions, each message
within the library is removed from the trader and the system, events are pushed to notify others
of the action, and the library is removed from the Trading Service. An AccessDenied exception
is returned if the user does not have functional rights to delete a library. The library and the
stored messages are also deleted from the database. User actions are logged into the operations
log.

R1B1 Detailed Design 3-43 02/04/00

PushEventSupplierDMSMessageLibraryImpl

[plans using library]
Warn User

[* for each DMSStoredMessage]
push(DMSStoredMessageDeleted)

remove

push(DMSLibraryDeleted)

 [* for each DMS stored message]
remove

getPlansUsingLibrary

Refer to getPlansUsingLibrary
sequence diagram for details.

removeLibrary(this)

[* for each DMSStoredMessage]
disconnect()

checkAccess

[AccessDenied]
log(AccessDenied)

[no right]
AccessDenied

[database error]
CHART2Exception

DMSLibraryFactoryImpl

[* for each DMSStoredMessage]
deleteStoredMessage

DMSLibraryDB OperationsLogORBTokenManipulator

checkAccess

[AccessDenied]
log(AccessDenied)

AccessDenied
AccessDenied

[error]
CHART2Exception[error]

CHART2Exception

log(DMSLibraryDeleted)

DMSStoredMessageImpl

ORB

CosTrading:Register

[* for each DMSStoredMessageImpl]
withdraw()

Figure 3-35. DMSLibraryModule:RemoveDMSMessageLibrary (Sequence Diagram)

3.3.2.8 DMSLibraryModule:RemoveDMSMessageLibraryFromFactory (Sequence
Diagram)

This sequence diagram shows how a DMS Message Library object is removed from the Library
Factory when a Message Library is deleted from the system.

R1B1 Detailed Design 3-44 02/04/00

Remove Object from List

DMSLibraryFactoryImpl

removeLibrary(Object)

Find Object in the List

CosTrading.RegisterORB

withdraw(DMSMessageLibraryImpl)

DMSLibraryDB

deleteMessageLibrary

disconnect(DMSMessageLibraryImpl)

Caller

Figure 3-36. DMSLibraryModule:RemoveDMSMessageLibraryFromFactory (Sequence
Diagram)

3.3.2.9 DMSLibraryModule:RemoveDMSStoredMessage (Sequence Diagram)

This sequence diagram shows how a user with the proper functional rights may remove a stored
DMS message from the system. Since a stored DMS message may be used in a plan, a check is
made to see if the message is used in a plan so that the user can be warned accordingly. The act
of deleting the stored message involves withdrawing the object from the trader, disconnecting it
from the ORB, updating the database, deleting the object and pushing an event to notify others
that the message has been removed from its library. An AccessDenied exception is returned if
the user does not have the functional right to delete a stored message. The user action is logged
into the operations log.

R1B1 Detailed Design 3-45 02/04/00

TokenManipulatorDMSStoredMessageImpl

checkAccess

log(AccessDenied)

AccessDenied

[error]
CHART2Exception

log(DMSStoredMessageDeleted)

[AccessDenied]
log(AccessDenied)

getPlansUsingMessage

PushEventSupplierDMSMessageLibraryImpl
ORB

Refer to getPlansUsingMessage
sequence diagram for details

DMSLibraryDB

deleteStoredMessage

remove

checkAccess

[error]
CHART2Exception

CosTrading.Register ORB

withdraw(DMSStoredMessageImpl)

disconnect(DMSStoredMessageImpl)

[plans using message]
Warn User

[no rights]
AccessDenied

[User wants to continue]
removeMessage

push(DMSStoredMessageDeleted)

[database error]
CHART2Exception

AccessDenied

OperationsLog

Figure 3-37. DMSLibraryModule:RemoveDMSStoredMessage (Sequence Diagram)

3.3.2.10 DMSLibraryModule:SetDMSMessageLibraryName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of a
message library. An AccessDenied exception is returned if the user does not have the functional
right to set the library name. Otherwise, the database is updated and an event is pushed via the
CORBA event service to notify others of the new library name. The user action is logged to the
operations log.

R1B1 Detailed Design 3-46 02/04/00

OperationsLog

checkAccess

[no right]
AccessDenied

setMessageLibraryName

[database error]
CHART2Exception

push(DMSLibraryNameChanged)

[AccessDenied]
log(AccessDenied)

log(DMSLibraryNameChanged)

PushEventSupplier

ORB

DMSMessageLibraryImpl

setName

TokenManipulator DMSLibraryDB

Figure 3-38. DMSLibraryModule:SetDMSMessageLibraryName (Sequence Diagram)

3.3.2.11 DMSLibraryModule:SetDMSStoredMessageName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of a
Stored DMS message. An AccessDenied exception is returned if the user does not have the
functional right to set the library name. Otherwise, the database is updated. The user action is
logged to the operations log.

R1B1 Detailed Design 3-47 02/04/00

TokenManipulator OperationsLogPushEventSupplier

ORB

DMSMessageLibraryImpl DMSStoredMessageImpl DMSLibraryDB

SetStoredMessageDescription

getStoredMessages

push(DMSStoredMessageChanged)

DMSStoredMessageList

setMessageDescription

log(DMSStoredMessageChanged)

[database error]
CHART2Exception

checkAccess

[AccessDenied]
log(AccessDenied)[no right]

AccessDenied

Figure 3-39. DMSLibraryModule:SetDMSStoredMessageName (Sequence Diagram)

3.3.2.12 DMSLibraryModule:Shutdown (Sequence Diagram)

This sequence diagram shows how the Message library module is shut down by the service
application. This module will withdraw all the offers that were published in the Trader and
delete the objects that were created by it.

R1B1 Detailed Design 3-48 02/04/00

ORB

disconnect(DMSLibraryFactoryImpl)

[* for each DMSMessageLibraryImpl]
disconnect

DMSMessageLibraryImpl

[* for each DMSMessageLibraryImpl]
shutdown

[* for each DMSStoredMessageImpl]
disconnect

DMSStoredMessageImpl

[* for each StoredDMSMessageImpl]
delete

[* for each DMSStoredMessageImpl]
withdraw

withdraw(DMSLibraryFactoryImpl)

success
delete

shutdown

shutdown
[* for each DMSMessageLibraryImpl]

withdraw

withdraw(Event Channel)

CosTrading.RegisterPushEventSupplierDMSLibraryFactoryImpl

Application Service

DMSLibraryModule

delete

Figure 3-40. DMSLibraryModule:Shutdown (Sequence Diagram)

3.4 DictionaryModule

3.4.1 DictionaryModClassDiagram (Class Diagram)
The DictionaryModule is a Service Application module that creates and serves the Dictionary
implementation to the rest of the Chart2 system.

R1B1 Detailed Design 3-49 02/04/00

Dictionary

1

1

1

1

1

OperationsLog

1

1

DictionaryModule

ServiceApplication

PushEventSupplier

1

1

DictionaryImpl

ServiceApplicationModule

*

1

1 DictionaryDB

DictionaryDB(DBConnectionManager db)
insertBannedWords
deleteBannedWords
getBannedWords

DBConnectionManager m_db

m_dictionaryImplList
m_evtChannelNameList

DictionaryImpl(DictionaryDB, ServiceApplication,
 PushEventSupplier)
getID
checkForBannedWords
addBannedWordList
removeBannedWordList
getBannedWords

m_ID
m_bannedWordList

Figure 3-41. DictionaryModClassDiagram (Class Diagram)

3.4.1.1 Dictionary (Class)

This class is used to check for banned words in a message that may be displayed on a DMS. In
addition to methods for checking the words, it has methods to allow the contents of the
dictionary to be changed.

1

interface

3.4.1.2 DictionaryImpl (Class)

This class implements the Dictionary as specified by the IDL. It provides functionality to add,
delete and check for words that are banned from being used in a DMS message

R1B1 Detailed Design 3-50 02/04/00

3.4.1.3 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary
implementation.

3.4.1.4 DictionaryDB (Class)

This class provides API calls to add, remove and retrieve banned words from the database. The
connection to the database is acquired from the Database object which manages all the database
connections.

3.4.1.5 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time
of instantiation of this class, it creates a queue for log entries. When a user of this class provides
a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to
the OpLogQueue. Once queued, the messages are written to the database by the queue driver
thread in the order they were queued.

1

3.4.1.6 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The
user of this class can pass a reference to the event channel factory to this object. The constructor
will create a channel in the factory. The push method is used to push data on the event channel.
The push method is able to detect if the event channel or its associated objects have crashed.
When this occurs, a flag is set, causing the push method to attempt to reconnect the next time
push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to
occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest
reconnect interval that can be used. The push method uses this interval and the current time to
determine if a reconnect should be attempted, thus reconnects can be throttled indepently of a
supplier's push rate.

1

3.4.1.7 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

1

interface

R1B1 Detailed Design 3-51 02/04/00

3.4.1.8 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

1

interface

3.4.2 Sequence Diagrams

3.4.2.1 DictionaryImpl:addBannedWordList (Sequence Diagram)

The given list of words is added to the banned words dictionary database and the copy of the
dictionary in memory is also updated. The newly added banned words are then communicated to
the dictionary event consumers by invoking the push operation. Access is denied to any operator
without the "Manage Dictionary" privilege.

R1B1 Detailed Design 3-52 02/04/00

TokenManipulator DictionaryDB PushEventSupplier

checkForBannedWords

[*for each word not already banned]
insertBannedWords

push(BannedWordsAdded)

[db error]
CHART2Exception

DB Error

Operator

success

checkAccess

[no access]
AccessDenied

DictionaryImpl

addBannedWordList

OperationsLog

[no access]
log

log

[db error]
CHART2Exception

Figure 3-42. DictionaryImpl:addBannedWordList (Sequence Diagram)

3.4.2.2 DictionaryImpl:checkForBannedWords (Sequence Diagram)

The string provided by the operator is scanned for any banned words by looking up the database.
Any character from the given set of delimiters is taken to be a valid delimiter of words in the
string. The list of banned words present in the string is returned.

R1B1 Detailed Design 3-53 02/04/00

DictionaryDB

getBannedWords[error]
CHART2Exception

checkForBannedWords

parseString

[*for words in string]
Is Word Banned

List of banned words

Operator
DictionaryImpl

Figure 3-43. DictionaryImpl:checkForBannedWords (Sequence Diagram)

3.4.2.3 DictionaryImpl:getBannedWords (Sequence Diagram)

The list of banned words in the dictionary is read from the database and returned to the operator.
Access is denied to any operator without the “Manage Dictionary” privilege.

R1B1 Detailed Design 3-54 02/04/00

checkAccess

OperationsLog

[no access]
log

DictionaryDB

getBannedWords

[db error]
chart2Exception

Operator
DictionaryImpl TokenManipulator

getBannedWords

[no access]
AccessDenied

Banned Words List

Figure 3-44. DictionaryImpl:getBannedWords (Sequence Diagram)

3.4.2.4 DictionaryImpl:removeBannedWordList (Sequence Diagram)

The given list of words is removed from the banned words dictionary database. The removed
words are then communicated to the dictionary event consumers by invoking the push operation.
Access is denied to any operator without the "Manage Dictionary" privilege.

R1B1 Detailed Design 3-55 02/04/00

OperationsLog

[no access]
log

log

Operator
DictionaryImpl TokenModifier DictionaryDB PushEventSupplier

removeBannedWordList

push(BannedWordsRemoved)

deleteBannedWords

[no access]
AccessDenied

[db error]
chart2Exception

checkAccess

Figure 3-45. DictionaryImpl:removeBannedWordList (Sequence Diagram)

3.4.2.5 DictionaryModule:initialize (Sequence Diagram)

When the DMS service calls the initialize method of Dictionary module, the dictionary objects
are created, connected to the ORB, exported to the CORBA trading service. The dictionary
objects are now available to serve the consumers.

R1B1 Detailed Design 3-56 02/04/00

success

export
connect

ORB

BOA

create

create

ORB

PushEventSupplier

getOperationsLog

initialize

getDBConnectionManager

getORB

getBOA

getTradingRegister

getEventChannelFactory

Application Service
DictionaryModule ServiceApplication CosTrading.Register

DictionaryImpl

Figure 3-46. DictionaryModule:initialize (Sequence Diagram)

3.4.2.6 DictionaryModule:shutdown (Sequence Diagram)

When the host service application calls shutdown in the Dictionary module, the dictionary object
is withdrawn from the CORBA trading service and disconnected from the ORB. The objects are
then deleted.

R1B1 Detailed Design 3-57 02/04/00

CosTrading.Register

withdraw(event channel)

withdraw

ORB

disconnect

Application Service
DictionaryModule

shutdown

DictionaryImpl

delete

Figure 3-47. DictionaryModule:shutdown (Sequence Diagram)

3.5 PlanService

3.5.1 PlanServiceClasses (Class Diagram)

The PlanService is an application that helps in installation and termination of the modules related
to Plan service.

R1B1 Detailed Design 3-58 02/04/00

1

DefaultServiceApplication 111 1

ServiceApplicationService

PlanService

ServiceApplicationModule

1

DBConnectionManager

PlanModule

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

ping
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

Figure 3-48. PlanServiceClasses (Class Diagram)

3.5.1.1 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed
a properties file during construction. This properties file contains configuration data used by this
class to set the ORB concurrency model, determine which ORB services need to available,
provide database connectivity, etc. The properties file also contains the class names of service
modules that should be served by the service application. During startup, the
DefaultServiceApplication instantiates the service application module classes listed in the
properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading
Service. Each module must provide an implementation of the getOfferIDs method and be able to
return the offer ids for each object they have exported to the trader during their initialization.
The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is
expected to remove its offers from the trader during a shutdown. If the
DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old
offers prior to initializing modules during its next start. This keeps multiple offers for the same
object from being placed in the trader.

R1B1 Detailed Design 3-59 02/04/00

3.5.1.2 PlanModule (Class)

This module creates, publishes and deletes the object that implements the PlanFactory interface.

3.5.1.3 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database connection
from the pool of connections maintained by this manager class. The connections are maintained
in two seperate lists namely, inUseList and freeList. The inUseList contains connections that
have already been assigned to a thread. The freeList contains unassigned connections. This class
assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers"
system property or by loading it explicitly. The class has a monitor thread that is started by the
constructor. This connection monitor thread periodically checks the inuseList to see if there are
connections that are owned by dead threads and move such connections to the freeList. The
connection monitor thread is started only if a non-zero value is specified for the monitoring time
interval in the constructor.

1

3.5.1.4 PlanService (Class)

This class provides the main method for the Plan Service Application. It initializes and shuts
down the PlanModule. It makes use of the DefaultServiceApplication to provide access to
standard objects to the server modules.

3.5.1.5 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown
externally. All implementing classes provide a means to be cleanly shutdown and can be pinged
to detect if they are alive.

interface

3.5.1.6 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

interface

3.5.1.7 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

R1B1 Detailed Design 3-60 02/04/00

3.5.2 Sequence Diagrams

3.5.2.1 PlanService:Shutdown (Sequence Diagram)

This diagram shows the sequence of operations that are performed when a Plan Service is
shutdown. PlanService sends a shutdown message to the PlanModules that are open and
destroys them. It also calls the shutdown method of DefaultServiceApplication. Refer to the
DefaultServiceApplcation's shutdown sequence diagram in the Utility package for datails.

ORB

getORB

disconnect(this)

Administrator

PlanService DefaultServiceApplication BOA

shutdown

getBOA

deactivate_impl

shutdown

delete

See DefaultApplicationService
Shutdown sequence diagram
for Application module shutdown
sequence.

Figure 3-49. PlanService:Shutdown (Sequence Diagram)

3.5.2.2 PlanService:Startup (Sequence Diagram)

This sequence diagram shows startup of the plan service. This service creates and starts a
DefaultServiceApplication object and the modules that are served by the PlanService. Refer to
DefaultServiceApplication's Start sequence diagram in Utility package for details. The
PlanService connects itself to the ORB and calls the method impl_is_ready on the BOA to enter
the event loop and start serving the CORBA requests.

R1B1 Detailed Design 3-61 02/04/00

ORB

See DefaultServiceApplication
Start sequence diagram for
Application Module initialization.

DefaultServiceApplicationcreate

Administrator

PlanService

main

BOA

[start failed]
exit

connect(this)

object_to_string(this)

start

Get IOR for service and
save it in a file for future
system access

getORB

getBOA

impl_is_ready

Figure 3-50. PlanService:Startup (Sequence Diagram)

3.6 PlanModule

3.6.1 PlanModuleClasses (Class Diagram)
This is an installable module that serves the PlanFactory and Plan objects to the rest of the
CHART2 system.

R1B1 Detailed Design 3-62 02/04/00

PlanDB
1

1

1

CosTrading.Register PushEventSupplier

1

*

1

*

1
PlanModule

ServiceApplicationModule

PlanFactoryImpl

PlanFactory

PlanImpl

Plan

PlanItem

11

1

1

1

*

1

11

1*

DBConnectionManager

*

createPlan
getPlans
getPlansUsingObject

getID
setName
getName
addItem
removeItem
activate
getItems
isUsingObject
remove

getID
setName
getName
activate
remove
isUsingObject

getPlanList
insertPlan
deletePlan
insertPlanItem
deletePlanItem
getPlanItems
setPlanName

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

PlanFactoryImpl(CosTrading.Register, PushEventSupplier, PlanDB)
getPlanOfferIDs()
removePlan(Object)
shutdown

m_devicePlanCollection
m_OffertIDs

PlanImpl(CosTrading.Register , PushEventSupplier, PlanDB, PlanFactoryImpl)
-monitorItemCommandStatus()

m_id
m_name

Figure 3-51. PlanModuleClasses (Class Diagram)

3.6.1.1 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Register is the interface to the trading
service that server applications use to publish objects in order to make them available for client
applications to discover.

1

interface

3.6.1.2 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database connection
from the pool of connections maintained by this manager class. The connections are maintained
in two seperate lists namely, inUseList and freeList. The inUseList contains connections that
have already been assigned to a thread. The freeList contains unassigned connections. This class

R1B1 Detailed Design 3-63 02/04/00

assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers"
system property or by loading it explicitly. The class has a monitor thread that is started by the
constructor. This connection monitor thread periodically checks the inuseList to see if there are
connections that are owned by dead threads and move such connections to the freeList. The
connection monitor thread is started only if a non-zero value is specified for the monitoring time
interval in the constructor.

1

3.6.1.3 PlanDB (Class)

This class contains the methods that perform database operations for the Plan module. It is
constructed with a Database object that provides the connections to the database server. All the
methods in this class get a new connection to the database before performing any operation on
the database. The connection is released at completion of the operation.

3.6.1.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the
system.

interface

3.6.1.5 PlanFactoryImpl (Class)

This class implements the PlanFactory interface and enables the management of the Plan objects
by other processes. It creates, publishes and deletes the objects that implement the Plan
interface.

3.6.1.6 Plan (Class)

This class has a collection of Plan Items which it maintains. It has functionality for changing the
plan items, and also allows the plan to be activated, which has the effect of activating each plan
item in the plan.

interface

3.6.1.7 PlanImpl (Class)

This class implements the Plan interface and provides the implementation for the methods
defined in the interface. It also manages the database operations for the PlanItems contained in
this Plan.

3.6.1.8 PlanModule (Class)

This module creates, publishes and deletes the object that implement the PlanFactory interface.

3.6.1.9 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract
class is subclassed for specific actions that can be planned in the system.

R1B1 Detailed Design 3-64 02/04/00

interface

3.6.1.10 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The
user of this class can pass a reference to the event channel factory to this object. The constructor
will create a channel in the factory. The push method is used to push data on the event channel.
The push method is able to detect if the event channel or its associated objects have crashed.
When this occurs, a flag is set, causing the push method to attempt to reconnect the next time
push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to
occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest
reconnect interval that can be used. The push method uses this interval and the current time to
determine if a reconnect should be attempted, thus reconnects can be throttled indepently of a
supplier's push rate.

1

3.6.1.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

3.6.2 Sequence Diagrams

3.6.2.1 PlanModule:ActivatePlan (Sequence Diagram)

This sequence diagram shows how a user with proper rights can activate a plan in the system.
An AccessDenied exception is returned if the user does not have the functional right to activate a
message. Activating the plan results in activating individual plan items. See
DMSControl:ActivateDMSStoredMsgItem sequence diagrams for more details about how the
PlanItems are activated. A Command status object is created to track the progress of the
executed plan. This command status object is updated periodically and is destroyed when the
plan execution is completed. Similar Command Status objects are created for each of the plan
items. The user is informed of the progress of the plan execution through these Command Status
objects.

R1B1 Detailed Design 3-65 02/04/00

completed

ORB

PlanImpl PlanItem

log(Plan executed)

monitorItemCommandStatus

update

Completed

TokenManipulator OperationsLog

checkAccess

[* for each plan item]
create

[* for each plan item]
activate

The Device Plan asynchronously
monitors each of the
CommandStatus objects created
for each plan item and
relays a summary status back
to the command status passed
into the Device Plan activate call

activate

[last item activated &&
failure in queuing any command]

CHART2Exception
[all commands

successfully queued]
success

[AccessDenied]
log(AccessDenied)

[no right]
AccessDenied

CommandStatus

CommandStatus

Figure 3-52. PlanModule:ActivatePlan (Sequence Diagram)

3.6.2.2 PlanModule:AddItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can add an item to an
existing plan in the system. An AccessDenied exception is returned if the user does not have the
right to add an item to the plan. Otherwise, a PlanItem object is created and added to the
database. A PlanItemAdded event is pushed through the event channel to notify other processes
that a plan item has been added to this plan. User actions are logged to the operations log.

R1B1 Detailed Design 3-66 02/04/00

PushEventSupplier

push(PlanItemAdded)

log(PlanItemAdded)

[Database error]
CHART2Exception

ORB

PlanImpl

addItem

TokenManipulator OperationsLog

checkAccess

[AccessDenied]
log(AccessDenied)

[no right]
AccessDenied

Database

insertPlanItem

Figure 3-53. PlanModule:AddItem (Sequence Diagram)

3.6.2.3 PlanModule:AddPlan (Sequence Diagram)

This diagram shows how a user with proper functional rights can add a plan to the system. An
AccessDenied exception is returned if the user does not have the functional right to add a plan.
Otherwise, the plan object is created and added to the database. The plan object is published in
CORBA Trader service and a PlanAdded event is pushed through the event channel to notify the
other processes that a new plan has been added.

Store Offer ID

[Database error]
CHART2Exception

OperationsLog

Plan

PushEventSupplier

ORB

CosTrading:Register

createPlan

TokenManipulator

checkAccess

[AccessDenied]
log(AccessDenied)[no right]

AccessDenied

PlanFactoryImpl

PlanImpl

Database

export(Plan)

push(PlanAdded)

insertPlan

log(PlanAdded)

create

Figure 3-54. PlanModule:AddPlan (Sequence Diagram)

R1B1 Detailed Design 3-67 02/04/00

3.6.2.4 PlanModule:GetPlansUsingObject (Sequence Diagram)

This sequence diagrams shows how to get a list of Plans that are using a particular object. The
ID of the object is passed to the Plan object to check if its PlanItems are using this object. If a
PlanItem is using the object, the Plan is added to a list. The list of Plans is returned after all the
Plans are checked.

True or False

ORB

PlanFactoryImpl PlanImpl PlanItem

getPlansUsingObject
[* for each PlanImpl]

isUsingObject
[* for each PlanItem]

isUsingObject

[if any PlanItem is
using this object]

True

Plan list

[if none of the PlanItems are
using this object]

False

If the PlanImpl returns TRUE
the plan is added to a
list that is returned to the
caller

Figure 3-55. PlanModule:GetPlansUsingObject (Sequence Diagram)

3.6.2.5 PlanModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Plan Module. An ApplicationService will
initialize this module. The connections to basic services such as ORB, Trader, Event channel
and database are obtained from the ServiceApplication. This module creates a Plan Module
specific database object. It also creates the PlanFactory object, which creates the Plan objects
from the plan list obtained from the database. The Plan objects are published in the trader. An
event channel is created to push the events to clients and it is published in the trader register.
The Offer IDs of all the objects that were published in the trader are saved to a file so that they
may be withdrawn.

R1B1 Detailed Design 3-68 02/04/00

Store Offer ID

create

ServiceApplication

PlanFactoryImpl

PlanImpl

CosTrading:Register

PlanDB

initialize

getTradingRegister

getDBConnectionManager

getEventChannelFactory

create

getPlanList

[* for each Plan]
create

getPlanItems

Store Offer IDs

[* for each planImpl]
export

PushEventSuppliercreate

export(PushEventSupplier)

getProperties

Application Service

PlanModule

getDefaultProperties

getTradingLookup

export(PlanFactory)

ORB

connect(this)

connect(this)

connect(this)

Figure 3-56. PlanModule:Initialize (Sequence Diagram)

3.6.2.6 PlanModule:RemoveItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can remove a plan item
from a plan in the system. An AccessDenied exception is returned if the user does not have the
right to remove an item from the plan. Otherwise, the plan item is deleted from the database and
the object is destroyed. An event is pushed through the event channel to notify other processes
that the plan item has been removed from the plan. User actions are logged to the operations log.

R1B1 Detailed Design 3-69 02/04/00

PlanItem

remove

PlanDB

deletePlanItem

log(PlanItemRemoved)

PushEventSupplier

push(PlanItemRemoved)

ORB

[Database error]
CHART2Exception

[AccessDenied]
log(AccessDenied)

[no right]
AccessDenied

TokenManipulator OperationsLog

checkAccess

PlanImpl

removeItem

Figure 3-57. PlanModule:RemoveItem (Sequence Diagram)

3.6.2.7 PlanModule:RemovePlan (Sequence Diagram)

This sequence diagram shows how a user with proper rights can delete a Plan from the system.
An AccessDenied exception is returned if the user does not have the functional right to delete a
Plan. Otherwise, the Plan is deleted from the database and the object is destroyed. The Plan is
withdrawn from the trader and a PlanRemoved event is pushed through the event channel to
notify the clients that the plan has been deleted. Note that the deletion of a plan results in the
deletion of all the plan items that are used in the plan from the system and the database. The user
actions are logged to the operations log.

R1B1 Detailed Design 3-70 02/04/00

CosTrading.Register

removePlan(this)

[* for each PlanItem]
deletePlanItem

ORB

PushEventSupplierPlanImpl PlanItem OperationsLog

remove

[* for each PlanItem]
remove

[Database error]
CHART2Exception

[AccessDenied]
log(AccessDenied)

push(PlanRemoved)

withdraw(Plan)

log(PlanRemoved)

TokenManipulator Database

checkAccess

[no right]
AccessDenied

PlanFactoryImpl

Figure 3-58. PlanModule:RemovePlan (Sequence Diagram)

3.6.2.8 PlanModule:RemovePlanFromFactory (Sequence Diagram)

This sequence diagram shows how a Plan object is removed from the Plan Factory when a Plan
is deleted from the system.

R1B1 Detailed Design 3-71 02/04/00

PlanFactoryImpl CosTrading.RegisterORB PlanDB

disconnect(PlanImpl)

withdraw(PlanImpl)

deletePlan

Remove Object from List

removePlan(Obj)

Find Object in the List

Caller

Figure 3-59. PlanModule:RemovePlanFromFactory (Sequence Diagram)

3.6.2.9 PlanModule:SetPlanName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of a
Plan. An access denied exception is returned if the user does not have the right to change the
name. Otherwise, the name is changed and the database is updated. An event id pushed via the
CORBA event service to notify others of the new Plan name. The user actions are logged to the
operations log.

R1B1 Detailed Design 3-72 02/04/00

ORB

PlanImpl TokenManipulator

setName

checkAccess

[AccessDenied]
log(AccessDenied)[no right]

AccessDenied

[Database error]
CHART2Exception

OperationsLogPlanDB PushEventSupplier

setPlanName

push(Plan Name Changed)

log(Plan Name Changed)

Figure 3-60. PlanModule:SetPlanName (Sequence Diagram)

3.6.2.10 PlanModule:Shutdown (Sequence Diagram)

This diagram shows the shutdown sequence of the Plan module. All the Plan objects that were
published in the trader by the PlanFactory and the PlanFactory itself are withdrawn and
destroyed. The event channel is also withdrawn from the trader and destroyed.

R1B1 Detailed Design 3-73 02/04/00

withdraw(PlanFactory)

shutdown

shutdown

CosTrading.Register

[* for each PlanImpl]
withdraw

PushEventSupplierPlanImpl

Application Service

PlanModule PlanFactoryImpl

withdraw(Event Channel)

delete

success

[* for each PlanImpl]
delete

ORB

[* for each PlanImpl]
disconnect

disconnect(PlanFactoryImpl)

delete

Figure 3-61. PlanModule:Shutdown (Sequence Diagram)

3.7 UserManagementService

3.7.1 UserManagementServiceClassDiagram (Class Diagram)

This diagram models the class relationships that exist within the User management service
application. Note that the UserManagementService does not contain any classes that are specific
to the UserManagementModule or the UserManagementResourcesModule. It knows only that it
will utilize a DefaultServiceApplication that will aid it in determining which modules need to be
installed, and setting up the CORBA ORB, CORBA services, and system database connection.
The details pertinent to the installed modules are included in separate models.

R1B1 Detailed Design 3-74 02/04/00

11

ServiceApplicationModule

ServiceApplication

1

1

*1

UserManagementResourcesModule UserManagementModule

DefaultServiceApplication

java.util.Properties

Service

ServiceApplicationProperties

1

1

2 1

DBConnectionManager

UserManagementService

getProperty()
setProperty()

ping
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

start()
shutdown()

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

UserManagementModule()

m_application

UserManagementResourcesModule()

m_application
ServiceApplicationProperties(
String propertiesFilename)
getProperties()
getDefaultProperties()
getThreadModel():int
getThreadPoolSize():int
getDatabaseConnectString():String
getDatabaseUserName():String
getDatabasePassword():String
getModuleNames():String[]
getNetConnectionSite():String

Figure 3-62. UserManagementServiceClassDiagram (Class Diagram)

3.7.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database connection
from the pool of connections maintained by this manager class. The connections are maintained
in two seperate lists namely, inUseList and freeList. The inUseList contains connections that
have already been assigned to a thread. The freeList contains unassigned connections. This class
assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers"
system property or by loading it explicitly. The class has a monitor thread that is started by the
constructor. This connection monitor thread periodically checks the inuseList to see if there are
connections that are owned by dead threads and move such connections to the freeList. The
connection monitor thread is started only if a non-zero value is specified for the monitoring time
interval in the constructor.

3.7.1.2 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed
a properties file during construction. This properties file contains configuration data used by this
class to set the ORB concurrency model, determine which ORB services need to available,
provide database connectivity, etc. The properties file also contains the class names of service
modules that should be served by the service application. During startup, the

R1B1 Detailed Design 3-75 02/04/00

DefaultServiceApplication instantiates the service application module classes listed in the
properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading
Service. Each module must provide an implementation of the getOfferIDs method and be able to
return the offer ids for each object they have exported to the trader during their initialization.
The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is
expected to remove its offers from the trader during a shutdown. If the
DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old
offers prior to initializing modules during its next start. This keeps multiple offers for the same
object from being placed in the trader.

3.7.1.3 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its “defaults;” this second property list
is searched if the property key is not found in the original property list.

3.7.1.4 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown
externally. All implementing classes provide a means to be cleanly shutdown and can be pinged
to detect if they are alive.

interface

3.7.1.5 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the necessary
properties from the java properties configuration file. It also provides a default properties file
which can be retrieved by anyone holding a ServiceApplication interface reference. This gives
each installed service module the opportunity to load default values before retrieving property
values from the properties file.

3.7.1.6 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager interface
for user configuration and manipulation.

3.7.1.7 UserManagementResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that are
used by the User Management service application.

R1B1 Detailed Design 3-76 02/04/00

3.7.1.8 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

interface

3.7.1.9 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.7.1.10 UserManagementService (Class)

This is the main class for the User Management service application. The main method in this
class will be the main entry point for this application. The application simply provides basic
CORBA services to the rest of the application and manages the initialization and shutdown of the
installed modules.

3.7.2 Sequence Diagrams

3.7.2.1 UserManagementService:Shutdown (Sequence Diagram)

The user management service is responsible for shutting down the application. It does this by
shutting down the DefaultServiceApplication which will not return until all of the installable
modules have been shutdown. At this point, the service will call the deactivate_impl method on
the basic object adapter (BOA). The deactivate_impl call frees the main thread that is blocking
on the impl_is_ready call within the main function of the application. This will cause the
application to exit by reaching the end of the main method.

R1B1 Detailed Design 3-77 02/04/00

This call will free the
main thread to exit the
application.

getORB

disconnect(this)

shutdown

delete

deactivate_impl

DefaultServiceApplication

This method is declared oneway
and does not require a return.

ORB BOA

ORB

UserManagementService

shutdown

Figure 3-63. UserManagementService:Shutdown (Sequence Diagram)

3.7.2.2 UserManagementService:Startup (Sequence Diagram)

The user management service class implements the Service IDL interface. As such, it must be
connected to the ORB. Additionally, it is the responsibility of the service object to create the
DefaultServiceApplication object that will install all of the installable service modules. Finally,
a call to BOA.impl_is_ready will be made. This call will block until the deactivate_impl is
called at which point the application will exit.

R1B1 Detailed Design 3-78 02/04/00

Refer to DefaultServiceApplication
Start sequence diagram for details.
For R1B1 the UserManagementService
will be configured to serve the
UserManagementModule and the
UserManagementResourcesModule.

ORB BOA

This call will block
until the BOA
deactivate_impl
is called.

This service implements
the Service IDL interface, and
so must connect itself to the ORB.

Output the object IOR to
a file so it may be used
by future system monitor
via the Service interface.

main

[start failed]
exit

getORB

connect(this)

object_to_string(this)

exit

impl_is_ready

start

getBOA

DefaultServiceApplicationcreate

Administrator

UserManagementService

Figure 3-64. UserManagementService:Startup (Sequence Diagram)

3.8 UserManagementModule

3.8.1 UserManagementModuleClasses (Class Diagram)

R1B1 Detailed Design 3-79 02/04/00

UserManagementDB

1

1

CosTrading.Lookup

1

1

UserManagementModule

CosTrading.Register

1

1

UserManagerImpl
1

ServiceApplication

1

1

1

UserManager

ServiceApplicationModule

getUsers
getRoles
getUser
getUserRoles
getUserPassword
setUserPassword
createRole
deleteRole
setRoleFunctionalRights
getRoleFunctionalRights
createUser
deleteUser
grantRole
revokeRole
setUserPassword
setUserRoles

DBConnectionManager m_db;

createUser
deleteUser
getUsers
getRoles
getUserRoles
getRoleFunctionalRights
setRoleFunctionalRights
createRole
deleteRole
changeUserPassword
setUserRoles
grantRole
revokeRole
setUserPassword

UserManagerImpl(UserManagementDatabase db, CosTrading.Register traderReg, CosTrading.Lookup traderLookup)

m_database

UserManagementModule()

m_application

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

Figure 3-65. UserManagementModuleClasses (Class Diagram)

3.8.1.1 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Register is the interface to the trading
service that server applications use to publish objects in order to make them available for client
applications to discover.

1

interface

3.8.1.2 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

interface

3.8.1.3 ServiceApplicationModule (Class)

R1B1 Detailed Design 3-80 02/04/00

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.8.1.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects which have previously been published.

1

interface

3.8.1.5 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment
data in the database. This class uses a Database object to retrieve a connection to the database
for its exclusive use during a method call.

3.8.1.6 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager interface
for user configuration and manipulation.

3.8.1.7 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users,
roles, and functional rights. The UserManager is largely an interface to the User Management
database tables.

1

interface

3.8.1.8 UserManagerImpl (Class)

This class is the specific implementation of a UserManager interface which will be served by the
User Management Service. As such, it provides implementations of each of the methods in the
UserManger interface.

3.8.2 Sequence Diagrams

R1B1 Detailed Design 3-81 02/04/00

3.8.2.1 UserManagementModule:AddUser (Sequence Diagram)

A user with the proper functional rights may add a new user to the system. The user will be
added to the user database provided the password and username specified for the new user are
valid.

[invalid password]
InvalidPassword

InvalidUserName[invalid user name]
InvalidUserName

Success

OperationsLog

[access denied]
log

[access denied]
AccessDenied createUser

InvalidPassword

log

ORB
UserManagerImpl TokenManipulator UserManagementDB

createUser

checkAccess

[database error]
CHART2Exception[database error]

CHART2Exception

Figure 3-66. UserManagementModule:AddUser (Sequence Diagram)

3.8.2.2 UserManagementModule:ChangeUserPassword (Sequence Diagram)

A user may change his/her own password. The system will verify that the invoking user is
actually the user whose password is being changed and will require the user to pass his/her
current password which must match the password in the user database.

R1B1 Detailed Design 3-82 02/04/00

[database error]
CHART2Exception[database error]

CHART2Exception

UserManagementDB
ORB

UserManagerImpl

changeUserPassword

checkAccess

[access denied]
AccessDenied

getUserPassword
[unknown user]
UnknownUser

[incorrect password]
IncorrectPassword

Success

Thrown if the
invoking user is
not the user
whose password
is being changed

Thrown if the
old password
passed does not
match the users
password in the
database

UnknownUser

setUserPassword
InvalidPassword

OperationsLog

IncorrectPassword

log

[AccessDenied]
log

[invalid password]
InvalidPassword

TokenManipulator

Figure 3-67. UserManagementModule:ChangeUserPassword (Sequence Diagram)

3.8.2.3 UserManagementModule:CreateRole (Sequence Diagram)

A user with the proper functional rights may create a new role in the user database. The system
will verify that the role is not already defined before creating it.

R1B1 Detailed Design 3-83 02/04/00

ORB
UserManagerImpl TokenManipulator UserManagementDB

Success

createRole

log

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[AccessDenied]
log

[access denied]
AccessDenied

createRole
DuplicateRole[duplicate role]

DuplicateRole

checkAccess

Figure 3-68. UserManagementModule:CreateRole (Sequence Diagram)

3.8.2.4 UserManagementModule:DeleteRole (Sequence Diagram)

A user with the proper functional rights may delete a role from the user database. The system
will verify that the role is not currently assigned to any users before deleting it.

R1B1 Detailed Design 3-84 02/04/00

checkAccess

[database error]
CHART2Exception][database error]

CHART2Exception

ORB
UserManagerImpl TokenManipulator UserManagementDB

deleteRole

OperationsLog

[access denied]
AccessDenied

deleteRole

RoleInUse[role in use]
RoleInUse InvalidRole

[AccessDenied]
log

log

[invalid role]
InvalidRole

Success

Figure 3-69. UserManagementModule:DeleteRole (Sequence Diagram)

3.8.2.5 UserManagementModule:DeleteUser (Sequence Diagram)

A user with the proper functional rights may delete a user from the user database. The system
will check if the user who is being deleted is currently logged in. If the user is logged in, the
administrator will be notified of this fact and will not be able to delete the user. Note that the
administrator may use the system to force the user to logout and then delete the user. The check
to see if the user is currently logged in is a warning to the administrator and, due to its use of the
trader, cannot be guaranteed to successfully check all logins. If the user is deleted from the
database while logged in, however, it will not affect his/her current session. He/she will simply
not be able to use the system subsequent to logging out.

R1B1 Detailed Design 3-85 02/04/00

log

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[AccessDenied]
log

UserManagerImpl

TokenManipulator

UserManagementDB

Success

UnknownUser
[unknown user]
UnknownUser

deleteUser

delete

Check if the user
is logged in.

checkAccess

[access denied]
AccessDenied

deleteUser

CosTrading.Lookup

Get the published
operations centers

OperationsCenter
ORB

create

UserLoginSession

query

[for each Operations Center]
isUserLoggedIn

[user logged in]
UserLoggedIn

Figure 3-70. UserManagementModule:DeleteUser (Sequence Diagram)

3.8.2.6 UserManagementModule:GrantRole (Sequence Diagram)

A user with the proper functional rights may grant a role to a user. The user will not get his/her
new functional rights until he/she logs off and logs back on.

R1B1 Detailed Design 3-86 02/04/00

[database error]
CHART2Exception

UserManagerImpl TokenManipulator

[database error]
CHART2Exception

OperationsLog

[AccessDenied]
log

log

UserManagementDB

grantRole

checkAccess

[access denied]
AccessDenied

grantRole

DuplicateRole[duplicate role]
DuplicateRole InvalidRole
[invalid role]
InvalidRole

Success

UnknownUser
[unknown user]
UnknownUser

ORB

Figure 3-71. UserManagementModule:GrantRole (Sequence Diagram)

3.8.2.7 UserManagementModule:Initialize (Sequence Diagram)

Upon initialization the user manager module will create the objects that it is responsible for
serving, connect them to the ORB, and export them to the CORBA trading service. After
initialization this module is available for use by clients.

R1B1 Detailed Design 3-87 02/04/00

UserManagementDBcreate

Store Offer ID

ORB

Service Application

UserManagementModule ServiceApplication

Connect and export
 the UserManagerImpl

UserManagerImpl

getORB

success

initialize

create

connect

getTradingLookup

getTradingRegister

Store the offer so
we can withdraw it later.

getDBConnectionManager

CosTrading.Register

export

Figure 3-72. UserManagementModule:Initialize (Sequence Diagram)

3.8.2.8 UserManagementModule:ModifyRole (Sequence Diagram)

A user with the proper functional rights may change the functional rights that belong to a role.
This will have the effect of changing the actions that users who have been granted that role may
perform. However, these changes will not be recognized until the user logs out and logs back in.

R1B1 Detailed Design 3-88 02/04/00

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[AccessDenied]
log

log

[access denied]
AccessDenied

setRoleFunctionalRights

InvalidFunctionalRight[invalid funtional right]
InvalidFunctionalRight

UserManagementDB

setRoleFunctionalRights
checkAccess

InvalidRole[invalid role]
InvalidRole

Success

ORB
UserManagerImpl TokenManipulator

Figure 3-73. UserManagementModule:ModifyRole (Sequence Diagram)

3.8.2.9 UserManagementModule:RevokeRole (Sequence Diagram)

A user with the proper functional rights may revoke a role that has previously been granted to a
user. This action will result in the user having a reduced set of functional rights, and thus reduce
the number of system activities the user may perform. The user will get his/her new list of
functional rights the next time he/she logs in.

R1B1 Detailed Design 3-89 02/04/00

[database error]
CHART2Exception[database error]

CHART2Exception

[AccessDenied]
log

log

revokeRole

ORB
UserManagerImpl TokenManipulator UserManagementDB

Success

UnknownUser
[unknown user]
UnknownUser

checkAccess

[access denied]
AccessDenied

revokeRole

InvalidRole[invalid role]
InvalidRole

OperationsLog

Figure 3-74. UserManagementModule:RevokeRole (Sequence Diagram)

3.8.2.10 UserManagementModule:SetUserPassword (Sequence Diagram)

A user with the proper functional rights may set the password that a user must specify in order to
log into the system. This action does not require that the administrator be able to supply the
users current password and, therefore, is restricted to administrative users. This function is
included to deal with situations where users forget their system password.

R1B1 Detailed Design 3-90 02/04/00

[invalid password]
InvalidPassword

UserManagementDB
ORB

UserManagerImpl TokenManipulator

setUserPassword

checkAccess

[access denied]
AccessDenied

setUserPassword
[unknown user]
UnknownUser

Success

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[AccessDenied]
log

log

UnknownUser

InvalidPassword

Figure 3-75. UserManagementModule:SetUserPassword (Sequence Diagram)

3.8.2.11 UserManagementModule:Shutdown (Sequence Diagram)

The user management module will withdraw the user management object from the trader,
disconnect it from the ORB and delete it.

R1B1 Detailed Design 3-91 02/04/00

getTradingLookup

getORB

shutdown

success

Withdraw and
disconnect the
UserManagerImpl

ServiceApplication ORB UserManagerImplUserManagementModule

Service Application

disconnect

CosTrading.Register

withdraw

delete

Figure 3-76. UserManagementModule:Shutdown (Sequence Diagram)

3.9 UserManagementResourcesModule

3.9.1 UserManagementResourceClasses (Class Diagram)

These classes represent the resource control portion of the User Management service application.
These classes have been located in an installable service module in order to allow them to be
served from an alternate service application in future releases of the system. The purpose of this
module is to serve objects implementing the Organization interface and objects implementing the
OperationsCenter interface.

R1B1 Detailed Design 3-92 02/04/00

*
OperationsCenterImpl

*

ServiceApplicationModule

*

OperationsCenter

Organization

UserManagementResourcesModule

1

OperationsCenterDB

*

1

1

1

1

ORB

1

1

1

1

ServiceApplication

UserLoginSession

*1

CosTrading.Lookup

1

UserManagementDB

OrganizationImpl

getUsers
getRoles
getUser
getUserRoles
getUserPassword
setUserPassword
createRole
deleteRole
setRoleFunctionalRights
getRoleFunctionalRights
createUser
deleteUser
grantRole
revokeRole
setUserPassword
setUserRoles

DBConnectionManager m_db;

init()
BOA_init()
connect()
disconnect()
resolve_initial_references()
string_to_object()
object_to_string()

query

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

getID
getName
loginUser(UserLoginSession,name,password)
logoutUser
changeUser
getNumLoggedInUsers
isUserLoggedIn
getControlledResources
getLoginSessions
transferSharedResources
forceLogout
- setSessionLoggingOut

getID
getName

UserManagementResourcesModule()

m_application

OperationsCenterDB(DBConnectionManager db)
getOperationsCenters
getOrganizations
storeLoginSessions
getLoginSessions
getUserFunctionalRights

DBConnectionManager m_db

getOpCenter
getUsername
ping
forceLogout

OperationsCenterImpl(ORB orb, Database db, CosTrading.Lookup traderLookup)
- lookupLoginSession
- removeLoginSession
- addLoginSession

Figure 3-77. UserManagementResourceClasses (Class Diagram)

3.9.1.1 OperationsCenterDB (Class)

This class provides a set of API calls to access the Operations Center data from the database. The
API's provide functionality to add, remove and retrieve Operation Center data from the database.
The connection to the database is acquired from the Database object that manages all the
database connections.

3.9.1.2 Organization (Class)

The Organization class represents an organization that participates in the Chart system through
ownership of shared resources. The Organization can be used in conjunction with functional
rights to determine the level of access users have to shared resources owned by a given
organization. This allows access to be granted to a user to perform controlled operations on
shared resources owned by one organization but not another.

1

interface

3.9.1.3 OrganizationImpl (Class)

This class provides the implementation of the Organization interface for this module. Thus, it
provides a concrete implementation of each of the methods in the interface.

R1B1 Detailed Design 3-93 02/04/00

3.9.1.4 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

interface

3.9.1.5 OperationsCenterImpl (Class)

This class provides the implementation of the OperationsCenter interface for this module. It,
therefore, provides a concrete implementation of each of the methods in the interface. It also
contains a collection of UserLoginSession objects, one for each user who is currently logged in.

3.9.1.6 UserLoginSession (Class)

The UserLoginSession class is used to store information about a user that is logged into the
system. This object is served from the GUI and provides a means for the servers to call back into
the GUI process.

interface

3.9.1.7 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Lookup is the interface that applications
use to discover objects that have previously been published.

interface

3.9.1.8 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used
to log users into the system. If the username and password provided to the loginUser method are
valid, the caller is given a token that contains information about the user and the functional rights
of the user. This token is then used to call privileged methods within the system. Shared
resources in the system are either available or under the control of an OperationsCenter. The
OperationsCenter keeps track of users that are logged in so that it can ensure that the last user
does not log out while there are shared resources under its control. This list of logged in users is
also available for monitoring system usage or to force users to logout for system maintenance.

1

interface

3.9.1.9 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic mechanism
by which client applications send requests to server applications and receive responses to those
requests from servers.

R1B1 Detailed Design 3-94 02/04/00

interface

3.9.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.9.1.11 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment
data in the database. This class uses a Database object to retrieve a connection to the database
for its exclusive use during a method call.

3.9.1.12 UserManagementResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that are
used by the User Management service application.

3.9.2 Sequence Diagrams

3.9.2.1 UserManagementResourcesModule:ChangeUser (Sequence Diagram)

A client with the correct functional rights may select to relinquish his/her workstation to another
operator. This typically will happen at shift change. This sequence logs the new operator in
before logging the old operator out. Thereby guaranteeing that the shared resources controlled
by the operations center have a responsible operator during the transition. If this method throws
any type of exception, the old user is still logged in and the new user is not. If this method
returns a token, the old user is logged out and the new user is logged in.

R1B1 Detailed Design 3-95 02/04/00

OperationsCenterDB

Remove the old
LoginSession and
store the new one. addLoginSession

removeLoginSession

Remove the new login
session because the old
one could not be logged
off.

[logout failure]
removeLoginSession

log

ORB

OperationsCenter UserManagementDB OperationsLog

getUserFunctionalRights

delete

[* for each functional right]
add

changeUser

getUserPassword

LoginFailure

[LoginFailure]
log

Token

LogoutFailure

create TokenManipulator

If the login session
specified is not a valid
login session for a logged
in user.

Figure 3-78. UserManagementResourcesModule:ChangeUser (Sequence Diagram)

3.9.2.2 UserManagementResourcesModule:ForceLogout (Sequence Diagram)

A client with the correct functional rights may force a particular user to logout of the CHART2
system. This is actually accomplished in two steps. The client would first need to acquire a
UserLoginSession object before calling this method, please refer to the sequence diagram for the
getUserLoginSessions method for details. Once the user has acquired a UserLoginSession
he/she may contact the Operations Center where that UserLoginSession is being tracked and
inform it that the user should be forced to logout. The OperationsCenter will call the
forceLogout method on the specified UserLoginSession after removing the login session from its
internal collection of login sessions. Note that it is possible for the user to call the forceLogout
method directly on the UserLoginSession without informing the OperationsCenter. This method
of forcing a user to logout is also accepted. If this path is taken, the operations center will
contain a reference to a UserLoginSession which is no longer valid. This possibility is accounted
for by pinging the UserLoginSession objects each time the getNumLoggedInUsers() method is
called. Please refer to that sequence diagram for details.

R1B1 Detailed Design 3-96 02/04/00

forceLogout

lookupLoginSession

OperationsLog

removeLoginSession

forceLogout

UserLoginSession

checkAccess

log

AccessDenied
AccessDenied

[access denied]
AccessDenied

[AccessDenied]
log

[AccessDenied]
log

TokenManipulatorcreate

checkAccess

deleteThrown if an error
occurs forcing the
user login session to
logout [LogoutFailure]

LogoutFailure

TokenManipulator

ORB

OperationsCenterImpl

Figure 3-79. UserManagementResourcesModule:ForceLogout (Sequence Diagram)

3.9.2.3 UserManagementResourcesModule:GetControlledResources (Sequence
Diagram)

A client may request a list of all shared resources that are currently controlled by this operations
center. This would typically happen if the user were looking to transfer responsibility for some
of all of the controlled shared resources from one operations center to another. The operations
center will contact each shared resource manager in the system and get a list of resources which
it is currently controlling. The lists returned by each shared resource manager will be combined
and the entire list of controlled resources will be returned to the user.

R1B1 Detailed Design 3-97 02/04/00

ORB

CosTrading.Lookup SharedResourceManager

getControlledResources
query

[* for each SharedResourceManager]
getControlledResources

OperationsCenterImpl

Get the shared
resource managers
from the trader.

Figure 3-80. UserManagementResourcesModule:GetControlledResources (Sequence
Diagram)

3.9.2.4 UserManagementResourcesModule:GetLoginSessions (Sequence Diagram)

A client with the correct functional rights may get a list of UserLoginSessions that represents the
list of users who are currently logged in from this operations center.

R1B1 Detailed Design 3-98 02/04/00

[access denied]
AccessDenied

list of sessions

log

OperationsCenterImpl OperationsLogTokenManipulator

ORB

getLoginSessions

checkAccess

[AccessDenied]
log

Figure 3-81. UserManagementResourcesModule:GetLoginSessions (Sequence Diagram)

3.9.2.5 UserManagementResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

This method allows a client to get the number of users who are currently logged in at this
operations center. This method will be used by the shared resource manager watchdogs to verify
that they do not have shared resources which are under the control of operations centers with no
users logged in. This method will ping each UserLoginSession before counting it as a valid
login session. The ping protects the system from counting login sessions from GUI's which have
been turned off or disconnected without performing a proper logout.

R1B1 Detailed Design 3-99 02/04/00

[*for each login session]
ping

ORB

OperationsCenterImpl

Return number of successfully
pinged user login sessions

UserLoginSession

getNumLoggedInUsers

[ping fails]
removeLoginSession

Figure 3-82. UserManagementResourcesModule:GetNumLoggedInUsers (Sequence
Diagram)

3.9.2.6 UserManagementResourcesModule:IsUserLoggedIn (Sequence Diagram)

R1B1 Detailed Design 3-100 02/04/00

[userName found]
return true

[* for each login session]
getUserName

OperationsCenterImpl

ORB

return false

isUserLoggedIn

UserLoginSession

Figure 3-83. UserManagementResourcesModule:IsUserLoggedIn (Sequence Diagram)

3.9.2.7 UserManagementResourcesModule:LoginUser (Sequence Diagram)

A client may login to the system. The system will verify that the user has specified the correct
password by looking in the user database. If the user has specified the correct password, the
system will create a token that contains the user's functional rights and will return it to the
invoking client. The login session will be stored internally in the operations center in order to
allow the center to respond to calls regarding shared resource control.

R1B1 Detailed Design 3-101 02/04/00

TokenManipulator

getUserFunctionalRights

ORB

OperationsCenterImpl UserManagementDB OperationsLog

loginUser

getUserPassword

[wrong password]
LoginFailure

[wrong password]]
log

Token

log

addLoginSession

createToken

[* for each functional right]
add

Figure 3-84. UserManagementResourcesModule:LoginUser (Sequence Diagram)

3.9.2.8 UserManagementResourcesModule:LogoutUser (Sequence Diagram)

A client may log out of the system. When an operator does this, the system will ping each user
login session it is tracking to verify the actual number of users who are currently logged in. If
the current number of valid login sessions for this operations center is one, then this user cannot
be allowed to logout if this operations center is currently controlling shared resources. In order
to determine if the operations center has controlled resources, the system will contact all of the
shared resource managers. If the operations center has controlled resources an exception will be
thrown, otherwise the user will be logged out.

R1B1 Detailed Design 3-102 02/04/00

[Invalid login session
or Couldn't be pinged]

LogoutFailure

removeLoginSession

ORB

OperationsCenterImpl OperationsLog

logoutUser

log

Find all shared
resource managers

CosTrading.Lookup SharedResourceManager

[if login session count == 1]
query

[* for each SharedResourceManager]
hasControlledResources

[last user &&
has Controlled Resources]
HasControlledResources

UserLoginSession

count the number
of login sessions
which are successfully
pinged

[* for each login session]
ping

Figure 3-85. UserManagementResourcesModule:LogoutUser (Sequence Diagram)

3.9.2.9 UserManagementResourcesModule:OperationsCenterImplInitialization
(Sequence Diagram)

This sequence shows the details of constructing an operations center implementation object. An
operations center is responsible for tracking the list of currently logged in users. When the
service is shutdown it will store the list in the database. When the service is restarted it will get
this list of login sessions from the database. Because the service may have been down for an
extended period, the login sessions may no longer be valid due to users logging out or shutting
down their client machines. Thus, each login session object will be pinged to see if it is still
active. If it is, the operations center will add it to the list of current sessions otherwise it will not.

R1B1 Detailed Design 3-103 02/04/00

At shutdown each login
session was stored in the
database. Now we will reconstruct
the login session reference and
ping it to make sure it is still running.
If it is, it will be added to the list of
current logins otherwise it will be
discarded.

ServiceApplicationModule

OperationsCenterImpl ORBOperationsCenterDB

Creates a
UserLoginSession
reference.

UserLoginSessioncreate

getLoginSessions

string_to_object

ping

[if ping successful]
addLoginSession

Figure 3-86. UserManagementResourcesModule:OperationsCenterImplInitialization
(Sequence Diagram)

3.9.2.10 UserManagementResourcesModule:Shutdown (Sequence Diagram)

When the service application calls the shutdown method on this module, the module will
withdraw all exported offers from the trader, disconnect any objects that it is currently serving
from the ORB and destroy them. The operations center will also store the current list of
UserLoginSession references in the database. This will allow the login sessions to be
reconstructed at startup.

R1B1 Detailed Design 3-104 02/04/00

object_to_string

OperationsCenterImpl OperationsCenterDB

Persist each of the
currently stored
UserLoginSessions. On
startup we will reconstruct
them and ping to ensure
they are still valid.

delete

storeLoginSessions

ServiceApplication ORBOrganizationImpl

Service Application

UserManagementResourcesModule

delete

disconnect

getTradingRegister

getORB

shutdown

success

CosTrading.Register

Withdraws all
offers made at
startup.

withdraw

Figure 3-87. UserManagementResourcesModule:Shutdown (Sequence Diagram)

3.9.2.11 UserManagementResourcesModule:Initialize (Sequence Diagram)

When the service is started, the service application will call initialize on this module. The
module will create the operations center and organization implementation objects which are
found in the database, connect them to the ORB and export them in the trading service so that
other applications may locate them.

R1B1 Detailed Design 3-105 02/04/00

export

Store Offer ID

UserManagementResourcesModule

Service Application

create

connect

Please refer to the
OperationsCenterImpl
initialization sequence diagram
for details on the creation of this
object.

getDBConnectionManager

getTradingLookup

CosTrading.RegisterServiceApplication ORB

OperationsCenterImpl

Store the ID of
each object offer so
they may be retracted later.

getTradingRegister

getORB
initialize

success

OperationsCenterDB

getOperationsCenters

OrganizationImpl

Each OperationsCenterImpl and
OrganizationImpl created will be
connected to the ORB.

getOrganizations

create

Each OperationsCenterImpl and
OrganizationImpl will be exported
to the trader.

Figure 3-88. UserManagementResourcesModule:Initialize (Sequence Diagram)

3.9.2.12 UserManagementResourcesModule:TransferSharedResources (Sequence
Diagram)

A client with the correct functional rights may transfer the control of shared resources from this
operations center to another. The system will verify that there are users logged in at the target
operations center and will then transfer control of the shared resources if there are.

R1B1 Detailed Design 3-106 02/04/00

Do this for each shared
resource passed.

log

getControllingOpCenter

Invoked on the
target operations
center.

getNumLoggedInUsers
[numLoggedInUsers < 1]
InvalidOperationsCenter

SharedResource

Pass the ID & Name
 of the target
Operations Center

checkAccess

[access denied]
AccessDenied

[AccessDenied]
log

getID

[if controlling op center is this op center]
setControllingOpCenter

getName

Thrown if no login
sessions are active
at the target operations
center

ORB

OperationsCenterImpl TokenManipulator OperationsLog

transferSharedResources

OperationsCenter

Figure 3-89. UserManagementResourcesModule:TransferSharedResources (Sequence
Diagram)

3.10 ExtendedEventService

3.10.1 ExtendedEventServiceClasses (Class Diagram)

The ExtendedEventService is an extension to the standard CORBA Event Service that allows
multiple channels to be created within the event service. The EventChannelFactory CORBA
interface is provided to allow others to create and remove standard CORBA event channel
objects.

R1B1 Detailed Design 3-107 02/04/00

EventChannelFactory CosEventChannelAdmin.EventChannel

Server

EventChannelFactoryImpl com.ooc.CosEventChannelAdmin.impl.EventChannel
1..*

1

1

1

createChannel(String name)
removeChannel(String name)
getChannels()
getChannel(String name)
shutdown()

for_consumers()
for_suppliers()
destroy()

main()

getDefaultChannel()

Hashtable m_channels;

Figure 3-90. ExtendedEventServiceClasses (Class Diagram)

3.10.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor's implementation of a CORBA event channel. The event service
provided by the vendor simply serves one of these objects. The Extended Event Service serves a
factory that allows multiple instances of the vendor supplied event channel to be created.

3.10.1.2 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

interface

R1B1 Detailed Design 3-108 02/04/00

3.10.1.3 EventChannelFactory (Class)

This interface defines the operations used to provide a collection of event channels that are
served through a CORBA ORB.

interface

3.10.1.4 EventChannelFactoryImpl (Class)

This class implements the EventChannelFactory interface that is defined by IDL. It provides
methods to allow for the creation and removal of standard corba event channel objects. The
implemenation of the event channel interface is provided by the ORB vendor.

3.10.1.5 Server (Class)

This class implements a main method that is used to serve an EventChannelFactory and the
Event Channels that are managed by the factory. This class is used to run the
ExtendedEventService, which extends the standard CORBA event service by allowing multiple
channels to be served from the same event service.

3.10.2 Sequence Diagrams

3.10.2.1 ExtendedEventService:CreateChannel (Sequence Diagram)

When the factory is requested to add a new channel, the factory first checks to see if a channel
with the given name already exists. If it does, an exception is thrown, returning a reference to
the existing channel. Otherwise, a new channel is created, connected to the ORB, and stored in
the factory. The new event channel is then passed back to the caller.

R1B1 Detailed Design 3-109 02/04/00

ChannelExists(EventChannel)

create

connect(EventChannel)

addToCollection

ChannelCreationFailure

EventChannel

ServiceApplicationModule

EventChannelFactory ORB

com.ooc.CosEventChannelAdmin.impl.EventChannel

createChannel

Figure 3-91. ExtendedEventService:CreateChannel (Sequence Diagram)

3.10.2.2 ExtendedEventService:Startup (Sequence Diagram)

During startup of the Extended Event Service, the main routine must initialize the ORB and
create an instance of the EventChannelFactoryImpl. The EventChannelFactoryImpl creates a
default Event channel and connects it to the ORB. This keeps the ExtendedEventService
providing the same functionality as the standard event service, thus a user that does not wish to
take advantages of the extended capabilities can use the service in a standard way. The
EventChannelFactory is connected to the ORB to provide the extended capabilities.

R1B1 Detailed Design 3-110 02/04/00

Admin

Server

com.ooc.CosEventChannelAdmin.impl.EventChannel

EventChannelFactoryImpl

ORB BOA

impl_is_ready never
returns. Objects that are
published through the ORB
respond to request received
via CORBA.

main()

init

create

create

connect(EventChannel)

connect(EventChannelFactory)

BOA_init

impl_is_ready

Figure 3-92. ExtendedEventService:Startup (Sequence Diagram)

3.11 System Interfaces

3.11.1 SystemInterfaces (Class Diagram)

This class diagram shows the interfaces from the High Level Design that are defined using IDL.
These interfaces are included as reference and are included on other class diagrams in this
design.

R1B1 Detailed Design 3-111 02/04/00

DMSControl.SignMetrics DMSControl.FontMetrics

1

1

1

1

checks msg
contents using

*1

*

1

Owns

Is Owned By1

*

PlanItemPlanPlanFactory

*1 *1

DMSStoredMsgItem

UserLoginSession

OperationsCenter

SharedResourceManager

Organization

DMSFactory

Dictionary

DMSMessageLibrary

DMSStoredMessage

DMS

CommandStatus

DMSControl.Configuration

constructs
DMS objects

using

*1

*1 * 1

UserManager

CommEnabled

SharedResource

DMSLibraryFactory

1*

*1

1 *

Service

long fmsDeviceID;
string name;
Organization owningOrg;
SignType signType;
SignMetrics signMetrics;
FontMetrics fontMetrics;
long pages;
string agentHostName;
string SNMPCommunityName;
boolean configurableCommTimeout;
long dmsTimeCommLoss;
long pollInterval;

getDMS
getMessage
setDMS
setMessage

getOpCenter
getUsername
ping
forceLogout

getID
getName
loginUser(UserLoginSession,name,password)
logoutUser
changeUser
getNumLoggedInUsers
isUserLoggedIn
getControlledResources
getLoginSessions
transferSharedResources
forceLogout
- setSessionLoggingOut

getResources
getControlledResources(OpCenterID)
hasControlledResources(OpCenterID)

getID
getName

createDMS
getDMSList

getID
checkForBannedWords
addBannedWordList
removeBannedWordList
getBannedWords

getID
setName
getName
addMessage
removeMessage
getStoredMessages
getPlansUsingLibrary
getPlansUsingMessage
remove

getID
getMessageDescription
setMessageDescription
getMessageContent
setMessageContent
getMinCharacters
remove

setName
getName
setMessage
getMessage
blankSign
isBlank
setPollInterval
getPollInterval
getMaxPollInterval
getStatusChangeTime
getStatus
resetController
pollNow
getSignMetrics
getFontMetrics
getMaxPages
setCommLossTimeout
getCommLossTimeout
getOperationalStatus
getNetConnectionSite
createPlanItem
remove
getSignType

update(String status):void
completed(String final_status)

takeOffline
putOnline
isOffline

getID
setControllingOpCenter
getControllingOpCenter
getControllingOpCenterName
clearControllingOpCenter
getOwnerOrg

createLibrary
getLibraryList

getID
setName
getName
activate
remove
isUsingObject

getID
setName
getName
addItem
removeItem
activate
getItems
isUsingObject
remove

createPlan
getPlans
getPlansUsingObject

createUser
deleteUser
getUsers
getRoles
getUserRoles
getRoleFunctionalRights
setRoleFunctionalRights
createRole
deleteRole
changeUserPassword
setUserRoles
grantRole
revokeRole
setUserPassword

long vmsSignHeightPixels;
long vmsSignWidthPixels;
short vmsCharacterHeightPixels
short vmsCharacterWidthPixels

short fontHeight;
short characterWidth;

ping
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

Figure 3-93. SystemInterfaces (Class Diagram)

R1B1 Detailed Design 3-112 02/04/00

3.11.1.1 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an
asynchronous operation. This is typically used by a GUI when field communications are
involved to complete a method call, allowing the GUI to show the user the progress of the
operation. The long running operation calls back to the CommandStatus object periodically as
the command is executed and makes a final call to the CommandStatus when the operation has
completed. The final call to the CommandStatus from the long running operation indicates the
success or failure of the command.

interface

3.11.1.2 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications
turned on or off. This typically only applies to field devices.

1

interface

3.11.1.3 Dictionary (Class)

This class is used to check for banned words in a message that may be displayed on a DMS. In
addition to methods for checking the words, it has methods to allow the contents of the
dictionary to be changed.

interface

3.11.1.4 DMS (Class)

This class represents a Dynamic Message Sign (DMS). It has attributes and methods for
controlling and maintaining the status of the DMS within the system.

interface

3.11.1.5 DMSFactory (Class)

The DMSFactory provides a means to create new DMS objects to be added to the system.

1

interface

3.11.1.6 DMSMessageLibrary (Class)

This class represents a logical collection of stored DMS messages which are stored in the
database.

interface

3.11.1.7 DMSStoredMessage (Class)

R1B1 Detailed Design 3-113 02/04/00

This class represents a stored DMS message that is created by the DMS Message Editor and
stored in the database. It can be displayed on multiple DMS models and contains an attribute
stating the minimum width of a sign that can display the message in its entirety.

interface

3.11.1.8 DMSStoredMsgItem (Class)

This class represents a plan item that is used to associate a stored DMS message with a specific
DMS. When the item is activated, it sets the message of the DMS to the stored message to
which it is linked.

interface

3.11.1.9 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used
to log users into the system. If the username and password provided to the loginUser method are
valid, the caller is given a token that contains information about the user and the functional rights
of the user. This token is then used to call privileged methods within the system. Shared
resources in the system are either available or under the control of an OperationsCenter. The
OperationsCenter keeps track of users that are logged in so that it can ensure that the last user
does not log out while there are shared resources under its control. This list of logged in users is
also available for monitoring system usage or to force users to logout for system maintenance.

1

interface

3.11.1.10 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.
Implementing classes must be able to provide a list of all shared resources under their
management. Implementing classes must also be able to tell others if there are any resources
under its management that are controlled by a given operations center.

1

interface

3.11.1.11 Organization (Class)

The Organization class represents an organization that participates in the Chart system through
ownership of shared resources. The Organization can be used in conjunction with functional
rights to determine the level of access users have to shared resources owned by a given
organization. This allows access to be granted to a user to perform controlled operations on
shared resources owned by one organization but not another.

1

interface

R1B1 Detailed Design 3-114 02/04/00

3.11.1.12 UserLoginSession (Class)

The UserLoginSession class is used to store information about a user that is logged into the
system. This object is served from the GUI and provides a means for the servers to call back into
the GUI process.

interface

3.11.1.13 DMSControl.Configuration (Class)

This typedef defines data that is used to identify the configuration of a DMS in the system.

typedef

3.11.1.14 DMSControl.FontMetrics (Class)

This typedef is included in the IDL to specify the data to be passed to/from operations to
initialize or query the size of the font used by a DMS.

typedef

3.11.1.15 DMSControl.SignMetrics (Class)

This typedef is included in the IDL to specify the data included in operations that initialize or
query the size of a DMS.

typedef

3.11.1.16 Plan (Class)

This class has a collection of Plan Items which it maintains. It has functionality for changing the
plan items, and also allows the plan to be activated, which has the effect of activating each plan
item in the plan.

interface

3.11.1.17 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the
system.

interface

3.11.1.18 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract
class is subclassed for specific actions that can be planned in the system.

interface

3.11.1.19 Service (Class)

R1B1 Detailed Design 3-115 02/04/00

This interface is implemented by all services in the system that allow themselves to be shutdown
externally. All implementing classes provide a means to be cleanly shutdown and can be pinged
to detect if they are alive.

interface

3.11.1.20 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users,
roles, and functional rights. The UserManager is largely an interface to the User Management
database tables.

1

interface

3.11.1.21 DMSLibraryFactory (Class)

This class is used to create new DMS libraries and maintain them in a collection.

interface

3.11.1.22 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations
center responsible for the disposition of the resource while the resource is in use.

1

interface

3.12 Utility

3.12.1 UtilityClasses (Class Diagram)

R1B1 Detailed Design 3-116 02/04/00

* 1

java.lang.Runnable

EventConsumerGroup

1 *

CosEventChannelAdmin.EventChannel

1

1

logs message
using

Log
11

BucketSet

*

1

PushEventConsumer

DBConnectionManager

Identifiable

ServiceApplicationModule

Identifier

OpLogQueue

ServiceApplicationProperties

1

1

2

1

EventConsumer

1

1

ObjectRemovalListener

IdentifiableLookupTable

1*

IdentifierGenerator

java.util.Properties

OpLogMessage

ServiceApplication

DefaultServiceApplication

LogFile

FunctionalRight

FMS

TokenManipulator

QueueableCommand
CommandQueue

11

PushEventSupplier

*

1

1..*

1

OperationsLog

getConnection():java.sql.Connection
releaseConnection();
shutdown();

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)
getChannel():EventChannel;
getMaxReconnectInterval(void):int;
setMaxReconnectInterval(int seconds):void;
push(Any data):void;
disconnectPushConsumer(void):void;

OpLogQueue()
put()
flush()
getFirstMessage()
removeFirstMessage()

m_logQueueTime

verifyConnection()
connect()
isEqual(consumer)

objectRemoved(Object obj):void;

getID()

run()

getProperty()
setProperty()

add(consumer)
setInterval()
remove(consumer)
-hasConsumer(consumer)
-verifyConnections()

for_consumers()
for_suppliers()
destroy()

OperationsLog(DBConnectionManager db)
log()
flushLog
shutdown

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

ServiceApplicationProperties(
String propertiesFilename)
getProperties()
getDefaultProperties()
getThreadModel():int
getThreadPoolSize():int
getDatabaseConnectString():String
getDatabaseUserName():String
getDatabasePassword():String
getModuleNames():String[]
getNetConnectionSite():String

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

addCommand(QueueableCommand cmd)
shutdown()
-getNextCommand():QueueableCommand

m_commands
m_shutdown

TokenManipulator()
createToken(userName, opCenterID, opCenterName)
optimize(operation, orgFilter)
add(userToken, operation, orgFilter)
add(userToken, operation)
remove(userToken, operation, orgFilter)
remove(userToken, operation)
getOpCenterName(userToken)
getOpCenterID(userToken)
getHostName(userToken)
getUserName(userToken)
checkAccess(userToken, operation, orgFilter)
checkAccess(userToken, operation)
hasRight(userToken, operation, orgFilter)
validateToken(userToken)
calcCheckSum(userToken)
printToken(userToken)
printNybble(nybble)

description()
enumerate()
fromInt()
name()
value()

ConfigureDMS
ConfigureSelf
ConfigureUsers
ForceDMSPoll
ManageDeviceComms
ManageDictionary
ManageUserLogins
ModifyMessageLibrary
ModifyPlans
ResetDMSGroup
SetDMSMessage
TransferAnySharedResource
UsePlans
ViewDictionary
ViewUserConfig
ViewUserLogins

addDMS
removeDMS
blankSign
stopPolling
startPolling
forcedPoll
resetController
setMessage
getMessage
setPollInterval
getPollInterval
setCommLostTimeout
getCommLostTimeout
getAsyncPollingResults

execute()
interrupted()

put(Identifiable)
find(identifier)
remove(identifier)
elements()
size()

createIdentifier()
areIdentifiersEqual()

add(comparable)
remove(comparable)
removeAll()
getElements(int)
size()
isEmpty()

m_comparables

String m_actionDesc
String m_actionType
String m_opCenter
Date m_timeStamp
String m_user

PushEventConsumer(channel, pushConsumer)

m_event_channel
m_pushConsumer

log(Object obj, String message, int level)
logStack(Object obj, String message, int level, Throwable th)
setKeepDays(int days)
setLogFileName(String fileName)
getKeepDays()
getLogFileName()
OpenLogFile()
setLogLevel(int level)
getLogLevel()
deleteLogFiles(Date presentTime)

m_logFileName
m_keepDays
m_logFile
m_creationDate
m_defFileName
m_logLevel

get():Log;
log()
logStack()

m_instance

Figure 3-94. UtilityClasses (Class Diagram)

3.12.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects added to
this collection must be of the same concrete type. Each element in the collection has an
associated counter that tracks how many times this element has been added. It is then possible to
get only the elements which have been added to the collection n times where n is a positive
integer value. This class is very useful for creating GUI menu’s for multiple objects as it allows
all objects to insert their menu items and then allows the user to get only those items with all
objects inserted.

R1B1 Detailed Design 3-117 02/04/00

3.12.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out
order. As each command object is pulled off the queue by the CommandQueue's thread, the
command object's execute method is called, at which time the command performs its intended
task.

3.12.1.3 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

interface

3.12.1.4 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that they do
not lose their connection to the CORBA event service. The class will periodically ask each
consumer to verify its connection to the event channel on which it is dependent to receive events.

3.12.1.5 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s threading
mechanism.

interface

3.12.1.6 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its “defaults;” this second property list
is searched if the property key is not found in the original property list.

3.12.1.7 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed
a properties file during construction. This properties file contains configuration data used by this
class to set the ORB concurrency model, determine which ORB services need to available,
provide database connectivity, etc. The properties file also contains the class names of service
modules that should be served by the service application. During startup, the
DefaultServiceApplication instantiates the service application module classes listed in the
properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading
Service. Each module must provide an implementation of the getOfferIDs method and be able to
return the offer ids for each object they have exported to the trader during their initialization.
The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is
expected to remove its offers from the trader during a shutdown. If the

R1B1 Detailed Design 3-118 02/04/00

DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old
offers prior to initializing modules during its next start. This keeps multiple offers for the same
object from being placed in the trader.

3.12.1.8 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time
of instantiation of this class, it creates a queue for log entries. When a user of this class provides
a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to
the OpLogQueue. Once queued, the messages are written to the database by the queue driver
thread in the order they were queued.

3.12.1.9 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be
managed in an EventConsumerGroup must implement.

interface

3.12.1.10 Identifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.
The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

interface

3.12.1.11 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed from
the system. This is typically used by objects that store a collection of other objects, such as a
factory, to allow them to remove objects from their collection when the object is to be removed
from the system.

interface

3.12.1.12 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log. Messages
added to the queue can be removed in FIFO order.

3.12.1.13 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The
user of this class can pass a reference to the event channel factory to this object. The constructor
will create a channel in the factory. The push method is used to push data on the event channel.
The push method is able to detect if the event channel or its associated objects have crashed.
When this occurs, a flag is set, causing the push method to attempt to reconnect the next time
push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to
occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest
reconnect interval that can be used. The push method uses this interval and the current time to

R1B1 Detailed Design 3-119 02/04/00

determine if a reconnect should be attempted, thus reconnects can be throttled independently of a
supplier's push rate.

3.12.1.14 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

interface

3.12.1.15 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

interface

3.12.1.16 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the necessary
properties from the java properties configuration file. It also provides a default properties file
which can be retrieved by anyone holding a ServiceApplication interface reference. This gives
each installed service module the opportunity to load default values before retrieving property
values from the properties file.

3.12.1.17 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.12.1.18 FMS (Class)

This class represents the CHART II system's interface to the FMS SNMP manager. Most
methods included in this class have an associated method in the FMS SNMP Manager DLL
provided by the FMS Subsystem. The other methods in this class exist to provide easier
interface to the DLL. As an example, this class contains a blankSign method that actually calls
setMessage on the FMS Subsystem with the message set to blank and beacons off.

3.12.1.19 FunctionalRight (Class)

This class acts as an enumuration that lists the types of functional rights possible in the CHART2
system. It contains a static member for each possible functional right.

3.12.1.20 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

R1B1 Detailed Design 3-120 02/04/00

3.12.1.21 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable objects.

3.12.1.22 QueueableCommand (Class)

A QueuableCommand is an abstract class used to represent a command that can be placed on a
queue for asynchronous execution. Derived classes implement the execute method to specify the
actions taken by the command when it is executed.

1

3.12.1.23 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for system
trace messages.

3.12.1.24 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log which is modeled by
the OperationsLog class.

3.12.1.25 OpLogMessage (Class)

This class holds data for a message to be stored in the system's Operations Log.

3.12.1.26 PushEventConsumer (Class)

This class is a utility class that will be responsible for connecting a consumer implementation to
an event channel, and maintaining that connection. When the verifyConnection method is called,
this object will determine if the channel has been lost and will attempt to re-connect to the
channel if it has.

3.12.1.27 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database connection
from the pool of connections maintained by this manager class. The connections are maintained
in two seperate lists namely, inUseList and freeList. The inUseList contains connections that
have already been assigned to a thread. The freeList contains unassigned connections. This class
assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers"
system property or by loading it explicitly. The class has a monitor thread that is started by the
constructor. This connection monitor thread periodically checks the inuseList to see if there are
connections that are owned by dead threads and move such connections to the freeList. The
connection monitor thread is started only if a non-zero value is specified for the monitoring time
interval in the constructor.

3.12.1.28 TokenManipulator (Class)

R1B1 Detailed Design 3-121 02/04/00

This class contains all functionality required for user rights in the system. It is the only code in
the system that knows how to create, modify and check a user's functional rights. It encapsulates
the contents of an octet sequence that will be passed to every secure method. Secure methods
should call the checkAccess method to validate the user. Client processes should use the check
access method to verify access and optimize to reduce reduce the size of the sequence to only
those rights which are necessary to invoke the secure method. The token contains the following
information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center
IOR, functional rights

3.12.2 Sequence Diagrams

3.12.2.1 DefaultServiceApplication:shutdown (Sequence Diagram)

When the DefaultServiceApplication is shutdown, each of the ServiceApplicationModule object
it created is shutdown. For those modules whose shutdown was successful, the offers they made
are removed from the file that recorded the offers during the start of service. The connection to
the database is cleared and the database object is deleted. The ServiceApplicationModule objects
are deleted.

getOffersFileName

delete

delete

delete

Service

DefaultServiceApplication ServiceApplicationModuleServiceApplicationProperties Database

shutdown

[*for each module]
shutdown

[*for each module successfully shutdown]
removeOffersFromFile

getModuleNames

clearAllConnections

OperationsLog

flushLog

delete

R1B1 Detailed Design 3-122 02/04/00

Figure 3-95. DefaultServiceApplication:shutdown (Sequence Diagram)

3.12.2.2 DefaultServiceApplication:Start (Sequence Diagram)

When a CHART2 service starts the DefaultServiceApplication, the ServiceApplicationProperties
object, that encapsulates the operational parameters of the Chart2 system, is created. The
CORBA objects ORB and BOA are initialized and their concurrency model and thread pool is
configured. The Trader and Event Channel factory are acquired and the database object is
created. During the start of a service, all the offers made by the service modules are recorded in a
file (as will be seen later) and at the time of shutdown these offers are removed from the file. The
presence of the offers in the file during start of service would indicate an improper previous
shutdown. These lingering offers in the trader from the previous run of this service are
withdrawn. The Service Application modules to be started by the service are determined from
the ServiceApplicationProperties and the corresponding module class objects are instantiated.
The modules are then initialized and the offers they made to the trader are recorded in a file.

R1B1 Detailed Design 3-123 02/04/00

[*for each module]
writeOffersToFile

Service

DefaultServiceApplication

ServiceApplicationModule

[module Initialize error]
CHART2Exception

narrow(Event Channel Factory)

EventChannelFactory

getModuleNames

[*for each module]
create

[*for each module]
initialize

[*for each module]
getOfferIDs

[write failed]
CHART2Exception

success

CHART2Exception
(Cannot Resolve Trader)

CHART2Exception
(Cannot narrow Trader Object)

resolve_initial_references("Extended Event Service")CHART2Exception
(Cannot Resolve Event Service)

create

CosTrading.Register

If the Offers file
contain offerIDs,
it indicates a
previous improper
shutdown and some
of the earlier offers
may not have been
withdrawn. We do the
cleanup for the above
condition here.

getOffersFileName
[*for each offer in OffersFile]

withdraw(offerID)

create

CHART2Exception
(Invalid Properties file)

getThreadPoolSize

init
BOA_init

getThreadModel

OperationsLogcreate

resolve_initial_references("Trading Service")

ORB

Database

CosTrading.Lookup

CHART2Exception
(Cannot narrow Event Channel)

thread_pool

conc_model

conc_model

BOA

narrow(Trader Object)

getDatabaseConnectString

getDatabaseUserName

getDatabasePassword

start

ServiceApplicationProperties

Figure 3-96. DefaultServiceApplication:Start (Sequence Diagram)

3.12.2.3 OperationsLog:LogMessage (Sequence Diagram)

When a log operation is invoked on the OperationsLog object, it creates a OpMessageLog and
adds this object to the OpLogQueue. The OpLogQueue driver thread wakes up at a pre-
configured interval and writes all the queued messages to the database.

R1B1 Detailed Design 3-124 02/04/00

The writing of the log
message to the database
is not immediate.
The OpLogQueue driver
thread wakes up at a
preconfigured interval and
writes the queued log
messages to the database

OperationsLog

Application

log

OpLogQueue

OpLogMessagecreate

add

write

[written log]
delete

Figure 3-97. OperationsLog:LogMessage (Sequence Diagram)

3.13 CORBA Utilities

3.13.1 CORBAClasses (Class Diagram)

The CORBAUtilities package exists to provide reference to classes that are supplied by the ORB
Vendor and are referenced by other packages' class or sequence diagrams.

R1B1 Detailed Design 3-125 02/04/00

CosEvent.
PushConsumer

CosEventChannelAdmin.
EventChannel

ORB BOA

com.ooc.CosEventChannelAdmin.impl.EventChannel

CosTrading.Lookup

CosTrading.Register

query

export
withdraw

pushfor_consumers()
for_suppliers()
destroy()

init()
BOA_init()
connect()
disconnect()
resolve_initial_references()
string_to_object()
object_to_string()

impl_is_ready
deactivate_impl

Figure 3-98. CORBAClasses (Class Diagram)

3.13.1.1 BOA (Class)

The BOA (Basic Object Adapter) is a class that assists implementation objects in using the ORB.
Typical services provided include attaching and detaching object implementations to and from
the ORB and generation of object references.

interface

3.13.1.2 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor's implementation of a CORBA event channel. The event service
provided by the vendor simply serves one of these objects. The Extended Event Service serves a
factory that allows multiple instances of the vendor supplied event channel to be created.

R1B1 Detailed Design 3-126 02/04/00

3.13.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

interface

3.13.1.4 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information
uses to push event updates to consumers who have previously attached to the channel.

interface

3.13.1.5 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects which have previously been published.

interface

3.13.1.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Register is the interface to the trading
service that server applications use to publish objects in order to make them available for client
applications to discover.

interface

3.13.1.7 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic mechanism
by which client applications send requests to server applications and receive responses to those
requests from servers.

interface

3.14 Java Classes

3.14.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming language that
are used in class and sequence diagrams for other packages within this design.

R1B1 Detailed Design 3-127 02/04/00

java.util.Hashtable

java.util.Properties

java.awt.event.ActionListener

java.lang.Runnable

java.lang.Object

hashCode()
equals()

actionPerformed()

getProperty()
setProperty() run()

Figure 3-99. JavaClasses (Class Diagram)

3.14.1.1 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item is clicked. For menu items, it is
attached to menu items when the menu is built.

interface

3.14.1.2 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.14.1.3 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading
mechanism.

interface

3.14.1.4 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-
null object can be used as a key or as a value. Objects used as keys implement the hashCode
method which is inherited by all objects from the java.lang.Object class.

3.14.1.5 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its “defaults;” this second property list
is searched if the property key is not found in the original property list.

R1B1 Detailed Design 3-128 02/04/00

Appendix A - Glossary

Dictionary A collection of banned words that cannot be used in a message
that is displayed on a DMS or stored in a DMS message library.

DMS A Dynamic Message Sign which can be controlled by one
Operations Center at a time.

DMS Stored Message Item A plan item that is used to set a specific message on a specific
DMS when activated.

FMS Field Management Station through which the CHART II system
communicates with the devices in the field.

Functional Right A privilege that gives a user the right to perform a particular
system action or related group of actions. A functional right may
be limited to pertain only to those shared resources owned by a
particular organization or can pertain to the shared resources of
all organizations.

Message Library A collection of stored messages that can be displayed on the
DMS.

Operations Center A center where one or more users may log in to operate the
Chart II system. Operations centers are assigned responsibility
for shared resources that are controlled by users who are logged
in at that operations center.

Organization An organization is an agency that participates in the CHART II
system and owns one or more Shared Resources.

Plan A collection of plan items that can be activated as a group.

Plan Item An action in the system that can be set up in advance to be
activated one or more times in the future. Plan items must be
contained in a plan. Specific types of plan items exist for
specific functionality. A plan item carries out its specific task
when activated.

Role A Role is a collection of functional rights that a user may
perform. The roles that pertain to a particular user for a
particular login session are determined when he/she logs into the
system.

R1B1 Detailed Design 3-129 02/04/00

Shared Resource A resource that is owned by an organization. A user may be
granted access to a shared resource owned by an organization
through the functional rights scheme.

User A user is somebody who uses the CHART II system. A user can
perform different operations in the system depending upon the
roles they have been granted in the system.

	1	Introduction	1-2
	Purpose
	Objectives
	Scope
	Acronyms
	References
	Design Process
	Design Tools
	Work Products

	S
	Software Architecture
	Service Application Framework
	Event Channel Fault Tolerance
	Object Publication
	Database Access
	Error Processing
	Service Application Maintenance
	Packaging

	P
	Package Designs
	DMSService
	DMSServiceClasses (Class Diagram)
	DefaultServiceApplication (Class)
	DMSControlModule (Class)
	DictionaryModule (Class)
	DMSLibraryModule (Class)
	DMSService (Class)
	ServiceApplication (Class)
	Service (Class)
	ServiceApplicationModule (Class)

	Sequence Diagrams
	DMSService:Shutdown (Sequence Diagram)
	DMSService:Startup (Sequence Diagram)

	DMSControlModule
	DMSControlClassDiagram (Class Diagram)
	CommEnabled (Class)
	CosTrading.Register (Class)
	DMS (Class)
	DMSFactoryImpl (Class)
	DMSControl.Configuration (Class)
	DMSControlModule (Class)
	DMSControlModuleProperties (Class)
	DMSControlDB (Class)
	DMSFactory (Class)
	DMSFont (Class)
	DMSImpl (Class)
	DMSMessage (Class)
	QueueableCommand (Class)
	DMSStoredMessage (Class)
	MULTIStringDefaults (Class)
	DMSStoredMsgItem (Class)
	DMSStoredMsgItemImpl (Class)
	PlanItem (Class)
	SharedResource (Class)
	SharedResourceManager (Class)
	PushEventSupplier (Class)
	CommandQueue (Class)
	CosTrading.Lookup (Class)
	DMSStoredMsgItemFactory (Class)
	ServiceApplicationModule (Class)
	java.util.Properties (Class)
	ServiceApplication (Class)

	QueueableCommandClassDiagram (Class Diagram)
	PollDMSNowCommand (Class)
	PutDMSOnlineCommand (Class)
	BlankDMSCommand (Class)
	QueueableCommand (Class)
	SetCommLossTimeoutCommand (Class)
	SetDMSMessageCommand (Class)
	SetPollIntervalCommand (Class)
	ResetDMSCommand (Class)
	TakeDMSOfflineCommand (Class)

	Sequence Diagrams
	DMSControlModule:ActivateDMSStoredMsgItem (Sequence Diagram)
	DMSControlModule:BlankSign (Sequence Diagram)
	DMSControlModule:CheckResourceConflict (Sequence Diagram)
	DMSControlModule:DMSControlModuleCreatePlanItem (Sequence Diagram)
	DMSControlModule:DMSControlModuleRemovePlanItem (Sequence Diagram)
	DMSControlModule:GetControlledResources (Sequence Diagram)
	DMSControlModule:HasControlledResources (Sequence Diagram)
	DMSControlModule:Initialize (Sequence Diagram)
	DMSControlModule:MonitorControlledResources (Sequence Diagram)
	DMSControlModule:ProcessFMSPollingResults (Sequence Diagram)
	DMSControlModule:RemoveDMS (Sequence Diagram)
	DMSControlModule:RemoveDMSStoredMsgItem (Sequence Diagram)
	DMSControlModule:CreateDMS (Sequence Diagram)
	DMSControlModule:CreatePlanItem (Sequence Diagram)
	DMSControlModule:SetMessage (Sequence Diagram)
	DMSControlModule:PollDMS (Sequence Diagram)
	DMSControlModule:ResetController (Sequence Diagram)
	DMSControlModule:SetCommLossTimeout (Sequence Diagram)
	DMSControlModule:SetDMSOffline (Sequence Diagram)
	DMSControlModule:SetDMSOnline (Sequence Diagram)
	DMSControlModule:SetPollInterval (Sequence Diagram)
	DMSControlModule:Shutdown (Sequence Diagram)

	DMSLibraryModule
	DMSMessageLibraryClasses (Class Diagram)
	CosTrading.Lookup (Class)
	CosTrading.Register (Class)
	Database (Class)
	DMSLibraryDB (Class)
	DMSLibraryFactory (Class)
	DMSLibraryFactoryImpl (Class)
	DMSMessageLibrary (Class)
	DMSMessageLibraryImpl (Class)
	DMSStoredMessage (Class)
	DMSStoredMessageImpl (Class)
	DMSLibraryModule (Class)
	PushEventSupplier (Class)
	ServiceApplicationModule (Class)

	Sequence Diagrams
	DMSLibraryModule:CreateDMSMessageLibrary (Sequence Diagram)
	DMSLibraryModule:CreateDMSStoredMessage (Sequence Diagram)
	DMSLibraryModule:GetPlansUsingLibrary (Sequence Diagram)
	DMSLibraryModule:GetPlansUsingMessage (Sequence Diagram)
	DMSLibraryModule:Initialize (Sequence Diagram)
	DMSLibraryModule:ModifyDMSStoredMessage (Sequence Diagram)
	DMSLibraryModule:RemoveDMSMessageLibrary (Sequence Diagram)
	DMSLibraryModule:RemoveDMSMessageLibraryFromFactory (Sequence Diagram)
	DMSLibraryModule:RemoveDMSStoredMessage (Sequence Diagram)
	DMSLibraryModule:SetDMSMessageLibraryName (Sequence Diagram)
	DMSLibraryModule:SetDMSStoredMessageName (Sequence Diagram)
	DMSLibraryModule:Shutdown (Sequence Diagram)

	DictionaryModule
	DictionaryModClassDiagram (Class Diagram)
	Dictionary (Class)
	DictionaryImpl (Class)
	DictionaryModule (Class)
	DictionaryDB (Class)
	OperationsLog (Class)
	PushEventSupplier (Class)
	ServiceApplication (Class)
	ServiceApplicationModule (Class)

	Sequence Diagrams
	DictionaryImpl:addBannedWordList (Sequence Diagram)
	DictionaryImpl:checkForBannedWords (Sequence Diagram)
	DictionaryImpl:getBannedWords (Sequence Diagram)
	DictionaryImpl:removeBannedWordList (Sequence Diagram)
	DictionaryModule:initialize (Sequence Diagram)
	DictionaryModule:shutdown (Sequence Diagram)

	PlanService
	PlanServiceClasses (Class Diagram)
	DefaultServiceApplication (Class)
	PlanModule (Class)
	DBConnectionManager (Class)
	PlanService (Class)
	Service (Class)
	ServiceApplication (Class)
	ServiceApplicationModule (Class)

	Sequence Diagrams
	PlanService:Shutdown (Sequence Diagram)
	PlanService:Startup (Sequence Diagram)

	PlanModule
	PlanModuleClasses (Class Diagram)
	CosTrading.Register (Class)
	DBConnectionManager (Class)
	PlanDB (Class)
	PlanFactory (Class)
	PlanFactoryImpl (Class)
	Plan (Class)
	PlanImpl (Class)
	PlanModule (Class)
	PlanItem (Class)
	PushEventSupplier (Class)
	ServiceApplicationModule (Class)

	Sequence Diagrams
	PlanModule:ActivatePlan (Sequence Diagram)
	PlanModule:AddItem (Sequence Diagram)
	PlanModule:AddPlan (Sequence Diagram)
	PlanModule:GetPlansUsingObject (Sequence Diagram)
	PlanModule:Initialize (Sequence Diagram)
	PlanModule:RemoveItem (Sequence Diagram)
	PlanModule:RemovePlan (Sequence Diagram)
	PlanModule:RemovePlanFromFactory (Sequence Diagram)
	PlanModule:SetPlanName (Sequence Diagram)
	PlanModule:Shutdown (Sequence Diagram)

	UserManagementService
	UserManagementServiceClassDiagram (Class Diagram)
	DBConnectionManager (Class)
	DefaultServiceApplication (Class)
	java.util.Properties (Class)
	Service (Class)
	ServiceApplicationProperties (Class)
	UserManagementModule (Class)
	UserManagementResourcesModule (Class)
	ServiceApplication (Class)
	ServiceApplicationModule (Class)
	UserManagementService (Class)

	Sequence Diagrams
	UserManagementService:Shutdown (Sequence Diagram)
	UserManagementService:Startup (Sequence Diagram)

	UserManagementModule
	UserManagementModuleClasses (Class Diagram)
	CosTrading.Register (Class)
	ServiceApplication (Class)
	ServiceApplicationModule (Class)
	CosTrading.Lookup (Class)
	UserManagementDB (Class)
	UserManagementModule (Class)
	UserManager (Class)
	UserManagerImpl (Class)

	Sequence Diagrams
	UserManagementModule:AddUser (Sequence Diagram)
	UserManagementModule:ChangeUserPassword (Sequence Diagram)
	UserManagementModule:CreateRole (Sequence Diagram)
	UserManagementModule:DeleteRole (Sequence Diagram)
	UserManagementModule:DeleteUser (Sequence Diagram)
	UserManagementModule:GrantRole (Sequence Diagram)
	UserManagementModule:Initialize (Sequence Diagram)
	UserManagementModule:ModifyRole (Sequence Diagram)
	UserManagementModule:RevokeRole (Sequence Diagram)
	UserManagementModule:SetUserPassword (Sequence Diagram)
	UserManagementModule:Shutdown (Sequence Diagram)

	UserManagementResourcesModule
	UserManagementResourceClasses (Class Diagram)
	OperationsCenterDB (Class)
	Organization (Class)
	OrganizationImpl (Class)
	ServiceApplication (Class)
	OperationsCenterImpl (Class)
	UserLoginSession (Class)
	CosTrading.Lookup (Class)
	OperationsCenter (Class)
	ORB (Class)
	ServiceApplicationModule (Class)
	UserManagementDB (Class)
	UserManagementResourcesModule (Class)

	Sequence Diagrams
	UserManagementResourcesModule:ChangeUser (Sequence Diagram)
	UserManagementResourcesModule:ForceLogout (Sequence Diagram)
	UserManagementResourcesModule:GetControlledResources (Sequence Diagram)
	UserManagementResourcesModule:GetLoginSessions (Sequence Diagram)
	UserManagementResourcesModule:GetNumLoggedInUsers (Sequence Diagram)
	UserManagementResourcesModule:IsUserLoggedIn (Sequence Diagram)
	UserManagementResourcesModule:LoginUser (Sequence Diagram)
	UserManagementResourcesModule:LogoutUser (Sequence Diagram)
	UserManagementResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)
	UserManagementResourcesModule:Shutdown (Sequence Diagram)
	UserManagementResourcesModule:Initialize (Sequence Diagram)
	UserManagementResourcesModule:TransferSharedResources (Sequence Diagram)

	ExtendedEventService
	ExtendedEventServiceClasses (Class Diagram)
	com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)
	CosEventChannelAdmin.EventChannel (Class)
	EventChannelFactory (Class)
	EventChannelFactoryImpl (Class)
	Server (Class)

	Sequence Diagrams
	ExtendedEventService:CreateChannel (Sequence Diagram)
	ExtendedEventService:Startup (Sequence Diagram)

	System Interfaces
	SystemInterfaces (Class Diagram)
	CommandStatus (Class)
	CommEnabled (Class)
	Dictionary (Class)
	DMS (Class)
	DMSFactory (Class)
	DMSMessageLibrary (Class)
	DMSStoredMessage (Class)
	DMSStoredMsgItem (Class)
	OperationsCenter (Class)
	SharedResourceManager (Class)
	Organization (Class)
	UserLoginSession (Class)
	DMSControl.Configuration (Class)
	DMSControl.FontMetrics (Class)
	DMSControl.SignMetrics (Class)
	Plan (Class)
	PlanFactory (Class)
	PlanItem (Class)
	Service (Class)
	UserManager (Class)
	DMSLibraryFactory (Class)
	SharedResource (Class)

	Utility
	UtilityClasses (Class Diagram)
	BucketSet (Class)
	CommandQueue (Class)
	CosEventChannelAdmin.EventChannel (Class)
	EventConsumerGroup (Class)
	java.lang.Runnable (Class)
	java.util.Properties (Class)
	DefaultServiceApplication (Class)
	OperationsLog (Class)
	EventConsumer (Class)
	Identifiable (Class)
	ObjectRemovalListener (Class)
	OpLogQueue (Class)
	PushEventSupplier (Class)
	ServiceApplication (Class)
	ServiceApplicationModule (Class)
	ServiceApplicationProperties (Class)
	Identifier (Class)
	FMS (Class)
	FunctionalRight (Class)
	IdentifiableLookupTable (Class)
	IdentifierGenerator (Class)
	QueueableCommand (Class)
	Log (Class)
	LogFile (Class)
	OpLogMessage (Class)
	PushEventConsumer (Class)
	DBConnectionManager (Class)
	TokenManipulator (Class)

	Sequence Diagrams
	DefaultServiceApplication:shutdown (Sequence Diagram)
	DefaultServiceApplication:Start (Sequence Diagram)
	OperationsLog:LogMessage (Sequence Diagram)

	CORBA Utilities
	CORBAClasses (Class Diagram)
	BOA (Class)
	com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)
	CosEventChannelAdmin. EventChannel (Class)
	CosEvent. PushConsumer (Class)
	CosTrading.Lookup (Class)
	CosTrading.Register (Class)
	ORB (Class)

	Java Classes
	JavaClasses (Class Diagram)
	java.awt.event.ActionListener (Class)
	java.lang.Object (Class)
	java.lang.Runnable (Class)
	java.util.Hashtable (Class)
	java.util.Properties (Class)

	Appendix A - Glossary

